(* * Copyright (c) 1997-1999 Massachusetts Institute of Technology * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * *) (* abstraction layer for complex operations *) open Littlesimp open Expr (* type of complex expressions *) type expr = CE of Expr.expr * Expr.expr let two = CE (makeNum Number.two, makeNum Number.zero) let one = CE (makeNum Number.one, makeNum Number.zero) let i = CE (makeNum Number.zero, makeNum Number.one) let zero = CE (makeNum Number.zero, makeNum Number.zero) let make (r, i) = CE (r, i) let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b) let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)), makeNum Number.zero) let inverse_int_sqrt n = CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))), makeNum Number.zero) let int_sqrt n = CE (makeNum (Number.sqrt (Number.of_int n)), makeNum Number.zero) let nan x = CE (NaN x, makeNum Number.zero) let half = inverse_int 2 let times3x3 (CE (a, b)) (CE (c, d)) = CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]); makeTimes (b, makePlus [c; makeUminus (d)])], makePlus [makeTimes (a, makePlus [c; d]); makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))]) let times (CE (a, b)) (CE (c, d)) = if not !Magic.threemult then CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))], makePlus [makeTimes (a, d); makeTimes (b, c)]) else if is_constant c && is_constant d then times3x3 (CE (a, b)) (CE (c, d)) else (* hope a and b are constant expressions *) times3x3 (CE (c, d)) (CE (a, b)) let ctimes (CE (a, _)) (CE (c, _)) = CE (CTimes (a, c), makeNum Number.zero) let ctimesj (CE (a, _)) (CE (c, _)) = CE (CTimesJ (a, c), makeNum Number.zero) (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *) let exp n i = let (c, s) = Number.cexp n i in CE (makeNum c, makeNum s) (* various trig functions evaluated at (2*pi*i/n * m) *) let sec n m = let (c, s) = Number.cexp n m in CE (makeNum (Number.div Number.one c), makeNum Number.zero) let csc n m = let (c, s) = Number.cexp n m in CE (makeNum (Number.div Number.one s), makeNum Number.zero) let tan n m = let (c, s) = Number.cexp n m in CE (makeNum (Number.div s c), makeNum Number.zero) let cot n m = let (c, s) = Number.cexp n m in CE (makeNum (Number.div c s), makeNum Number.zero) (* complex sum *) let plus a = let rec unzip_complex = function [] -> ([], []) | ((CE (a, b)) :: s) -> let (r,i) = unzip_complex s in (a::r), (b::i) in let (c, d) = unzip_complex a in CE (makePlus c, makePlus d) (* extract real/imaginary *) let real (CE (a, b)) = CE (a, makeNum Number.zero) let imag (CE (a, b)) = CE (b, makeNum Number.zero) let iimag (CE (a, b)) = CE (makeNum Number.zero, b) let conj (CE (a, b)) = CE (a, makeUminus b) (* abstraction of sum_{i=0}^{n-1} *) let sigma a b f = plus (List.map f (Util.interval a b)) (* store and assignment operations *) let store_real v (CE (a, b)) = Expr.Store (v, a) let store_imag v (CE (a, b)) = Expr.Store (v, b) let store (vr, vi) x = (store_real vr x, store_imag vi x) let assign_real v (CE (a, b)) = Expr.Assign (v, a) let assign_imag v (CE (a, b)) = Expr.Assign (v, b) let assign (vr, vi) x = (assign_real vr x, assign_imag vi x) (************************ shortcuts ************************) let (@*) = times let (@+) a b = plus [a; b] let (@-) a b = plus [a; uminus b] (* type of complex signals *) type signal = int -> expr (* make a finite signal infinite *) let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero let hermitian n a = Util.array n (fun i -> if (i = 0) then real (a 0) else if (i < n - i) then (a i) else if (i > n - i) then conj (a (n - i)) else real (a i)) let antihermitian n a = Util.array n (fun i -> if (i = 0) then iimag (a 0) else if (i < n - i) then (a i) else if (i > n - i) then uminus (conj (a (n - i))) else iimag (a i))