/* * ESFMu: emulator for the ESS "ESFM" enhanced OPL3 clone * Copyright (C) 2023 Kagamiin~ * * This file includes code and data from the Nuked OPL3 project, copyright (C) * 2013-2023 Nuke.YKT. Its usage, modification and redistribution is allowed * under the terms of the GNU Lesser General Public License version 2.1 or * later. * * ESFMu is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 2.1 * of the License, or (at your option) any later version. * * ESFMu is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with ESFMu. If not, see . */ /* * ESFMu wouldn't have been possible without the hard work and dedication of * the retro computer hardware research and preservation community. * * I'd like to thank: * - Nuke.YKT * Developer of Nuked OPL3, which was the basis for ESFMu's code and * also a great learning resource on Yamaha FM synthesis for myself. * Nuke.YKT also gives shoutouts on behalf of Nuked OPL3 to: * - MAME Development Team(Jarek Burczynski, Tatsuyuki Satoh): * Feedback and Rhythm part calculation information. * - forums.submarine.org.uk(carbon14, opl3): * Tremolo and phase generator calculation information. * - OPLx decapsulated(Matthew Gambrell, Olli Niemitalo): * OPL2 ROMs. * - siliconpr0n.org(John McMaster, digshadow): * YMF262 and VRC VII decaps and die shots. * - rainwarrior * For performing the initial research on ESFM drivers and documenting * ESS's patent on native mode operator organization. * - jwt27 * For kickstarting the ESFM research project and compiling rainwarrior's * findings and more in an accessible document ("ESFM Demystified"). * - pachuco/CatButts * For documenting ESS's patent on ESFM's feedback implementation, which * was vital in getting ESFMu's sound output to be accurate. * - And everybody who helped out with real hardware testing */ #include "esfm.h" #include #include #include #include #include /* * Log-scale quarter sine table extracted from OPL3 ROM; taken straight from * Nuked OPL3 source code. * TODO: Extract sine table from ESFM die scans... does ESFM even use a sine * table? Patent documents give a hint to a possible method of generating sine * waves using some sort of boolean logic wizardry (lol) */ static const uint16_t logsinrom[256] = { 0x859, 0x6c3, 0x607, 0x58b, 0x52e, 0x4e4, 0x4a6, 0x471, 0x443, 0x41a, 0x3f5, 0x3d3, 0x3b5, 0x398, 0x37e, 0x365, 0x34e, 0x339, 0x324, 0x311, 0x2ff, 0x2ed, 0x2dc, 0x2cd, 0x2bd, 0x2af, 0x2a0, 0x293, 0x286, 0x279, 0x26d, 0x261, 0x256, 0x24b, 0x240, 0x236, 0x22c, 0x222, 0x218, 0x20f, 0x206, 0x1fd, 0x1f5, 0x1ec, 0x1e4, 0x1dc, 0x1d4, 0x1cd, 0x1c5, 0x1be, 0x1b7, 0x1b0, 0x1a9, 0x1a2, 0x19b, 0x195, 0x18f, 0x188, 0x182, 0x17c, 0x177, 0x171, 0x16b, 0x166, 0x160, 0x15b, 0x155, 0x150, 0x14b, 0x146, 0x141, 0x13c, 0x137, 0x133, 0x12e, 0x129, 0x125, 0x121, 0x11c, 0x118, 0x114, 0x10f, 0x10b, 0x107, 0x103, 0x0ff, 0x0fb, 0x0f8, 0x0f4, 0x0f0, 0x0ec, 0x0e9, 0x0e5, 0x0e2, 0x0de, 0x0db, 0x0d7, 0x0d4, 0x0d1, 0x0cd, 0x0ca, 0x0c7, 0x0c4, 0x0c1, 0x0be, 0x0bb, 0x0b8, 0x0b5, 0x0b2, 0x0af, 0x0ac, 0x0a9, 0x0a7, 0x0a4, 0x0a1, 0x09f, 0x09c, 0x099, 0x097, 0x094, 0x092, 0x08f, 0x08d, 0x08a, 0x088, 0x086, 0x083, 0x081, 0x07f, 0x07d, 0x07a, 0x078, 0x076, 0x074, 0x072, 0x070, 0x06e, 0x06c, 0x06a, 0x068, 0x066, 0x064, 0x062, 0x060, 0x05e, 0x05c, 0x05b, 0x059, 0x057, 0x055, 0x053, 0x052, 0x050, 0x04e, 0x04d, 0x04b, 0x04a, 0x048, 0x046, 0x045, 0x043, 0x042, 0x040, 0x03f, 0x03e, 0x03c, 0x03b, 0x039, 0x038, 0x037, 0x035, 0x034, 0x033, 0x031, 0x030, 0x02f, 0x02e, 0x02d, 0x02b, 0x02a, 0x029, 0x028, 0x027, 0x026, 0x025, 0x024, 0x023, 0x022, 0x021, 0x020, 0x01f, 0x01e, 0x01d, 0x01c, 0x01b, 0x01a, 0x019, 0x018, 0x017, 0x017, 0x016, 0x015, 0x014, 0x014, 0x013, 0x012, 0x011, 0x011, 0x010, 0x00f, 0x00f, 0x00e, 0x00d, 0x00d, 0x00c, 0x00c, 0x00b, 0x00a, 0x00a, 0x009, 0x009, 0x008, 0x008, 0x007, 0x007, 0x007, 0x006, 0x006, 0x005, 0x005, 0x005, 0x004, 0x004, 0x004, 0x003, 0x003, 0x003, 0x002, 0x002, 0x002, 0x002, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000 }; /* * Inverse exponent table extracted from OPL3 ROM; taken straight from * Nuked OPL3 source code. * TODO: Verify if ESFM uses an exponent table or if it possibly uses another * method to skirt around Yamaha's patents? */ static const uint16_t exprom[256] = { 0x7fa, 0x7f5, 0x7ef, 0x7ea, 0x7e4, 0x7df, 0x7da, 0x7d4, 0x7cf, 0x7c9, 0x7c4, 0x7bf, 0x7b9, 0x7b4, 0x7ae, 0x7a9, 0x7a4, 0x79f, 0x799, 0x794, 0x78f, 0x78a, 0x784, 0x77f, 0x77a, 0x775, 0x770, 0x76a, 0x765, 0x760, 0x75b, 0x756, 0x751, 0x74c, 0x747, 0x742, 0x73d, 0x738, 0x733, 0x72e, 0x729, 0x724, 0x71f, 0x71a, 0x715, 0x710, 0x70b, 0x706, 0x702, 0x6fd, 0x6f8, 0x6f3, 0x6ee, 0x6e9, 0x6e5, 0x6e0, 0x6db, 0x6d6, 0x6d2, 0x6cd, 0x6c8, 0x6c4, 0x6bf, 0x6ba, 0x6b5, 0x6b1, 0x6ac, 0x6a8, 0x6a3, 0x69e, 0x69a, 0x695, 0x691, 0x68c, 0x688, 0x683, 0x67f, 0x67a, 0x676, 0x671, 0x66d, 0x668, 0x664, 0x65f, 0x65b, 0x657, 0x652, 0x64e, 0x649, 0x645, 0x641, 0x63c, 0x638, 0x634, 0x630, 0x62b, 0x627, 0x623, 0x61e, 0x61a, 0x616, 0x612, 0x60e, 0x609, 0x605, 0x601, 0x5fd, 0x5f9, 0x5f5, 0x5f0, 0x5ec, 0x5e8, 0x5e4, 0x5e0, 0x5dc, 0x5d8, 0x5d4, 0x5d0, 0x5cc, 0x5c8, 0x5c4, 0x5c0, 0x5bc, 0x5b8, 0x5b4, 0x5b0, 0x5ac, 0x5a8, 0x5a4, 0x5a0, 0x59c, 0x599, 0x595, 0x591, 0x58d, 0x589, 0x585, 0x581, 0x57e, 0x57a, 0x576, 0x572, 0x56f, 0x56b, 0x567, 0x563, 0x560, 0x55c, 0x558, 0x554, 0x551, 0x54d, 0x549, 0x546, 0x542, 0x53e, 0x53b, 0x537, 0x534, 0x530, 0x52c, 0x529, 0x525, 0x522, 0x51e, 0x51b, 0x517, 0x514, 0x510, 0x50c, 0x509, 0x506, 0x502, 0x4ff, 0x4fb, 0x4f8, 0x4f4, 0x4f1, 0x4ed, 0x4ea, 0x4e7, 0x4e3, 0x4e0, 0x4dc, 0x4d9, 0x4d6, 0x4d2, 0x4cf, 0x4cc, 0x4c8, 0x4c5, 0x4c2, 0x4be, 0x4bb, 0x4b8, 0x4b5, 0x4b1, 0x4ae, 0x4ab, 0x4a8, 0x4a4, 0x4a1, 0x49e, 0x49b, 0x498, 0x494, 0x491, 0x48e, 0x48b, 0x488, 0x485, 0x482, 0x47e, 0x47b, 0x478, 0x475, 0x472, 0x46f, 0x46c, 0x469, 0x466, 0x463, 0x460, 0x45d, 0x45a, 0x457, 0x454, 0x451, 0x44e, 0x44b, 0x448, 0x445, 0x442, 0x43f, 0x43c, 0x439, 0x436, 0x433, 0x430, 0x42d, 0x42a, 0x428, 0x425, 0x422, 0x41f, 0x41c, 0x419, 0x416, 0x414, 0x411, 0x40e, 0x40b, 0x408, 0x406, 0x403, 0x400 }; /* * Frequency multiplier table multiplied by 2; taken straight from Nuked OPL3 * source code. */ static const uint8_t mt[16] = { 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30 }; /* * This is used during the envelope generation to apply KSL to the envelope by * determining how much to shift right the keyscale attenuation value before * adding it to the envelope level. */ static const uint8_t kslshift[4] = { 8, 1, 2, 0 }; /* * This encodes which emulation mode channels are the secondary channel in a * 4-op channel pair (where the entry is non-negative), and which is the * corresponding primary channel for that secondary channel. */ static const int emu_4op_secondary_to_primary[18] = { -1, -1, -1, 0, 1, 2, -1, -1, -1, -1, -1, -1, 9, 10, 11, -1, -1, -1 }; /* * Envelope generator dither table, taken straight from Nuked OPL3 source code. */ static const uint8_t eg_incstep[4][4] = { { 0, 0, 0, 0 }, { 1, 0, 0, 0 }, { 1, 0, 1, 0 }, { 1, 1, 1, 0 } }; typedef int13(*envelope_sinfunc)(uint10 phase, uint10 envelope); /* ------------------------------------------------------------------------- */ static uint12 ESFM_envelope_calc_exp(uint16 level) { if (level > 0x1fff) { level = 0x1fff; } return (exprom[level & 0xff] << 1) >> (level >> 8); } /* ------------------------------------------------------------------------- */ static int13 ESFM_envelope_calc_sin0(uint10 phase, uint10 envelope) { uint16 out = 0; int13 neg = 1; phase &= 0x3ff; if (phase & 0x200) { neg = -1; } if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return ESFM_envelope_calc_exp(out + (envelope << 3)) * neg; } /* ------------------------------------------------------------------------- */ static int13 ESFM_envelope_calc_sin1(uint10 phase, uint10 envelope) { uint16 out = 0; phase &= 0x3ff; if (phase & 0x200) { out = 0x1000; } else if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return ESFM_envelope_calc_exp(out + (envelope << 3)); } /* ------------------------------------------------------------------------- */ static int13 ESFM_envelope_calc_sin2(uint10 phase, uint10 envelope) { uint16 out = 0; phase &= 0x3ff; if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return ESFM_envelope_calc_exp(out + (envelope << 3)); } /* ------------------------------------------------------------------------- */ static int13 ESFM_envelope_calc_sin3(uint10 phase, uint10 envelope) { uint16 out = 0; phase &= 0x3ff; if (phase & 0x100) { out = 0x1000; } else { out = logsinrom[phase & 0xff]; } return ESFM_envelope_calc_exp(out + (envelope << 3)); } /* ------------------------------------------------------------------------- */ static int13 ESFM_envelope_calc_sin4(uint10 phase, uint10 envelope) { uint16 out = 0; int13 neg = 1; phase &= 0x3ff; if ((phase & 0x300) == 0x100) { neg = -1; } if (phase & 0x200) { out = 0x1000; } else if (phase & 0x80) { out = logsinrom[((phase ^ 0xff) << 1) & 0xff]; } else { out = logsinrom[(phase << 1) & 0xff]; } return ESFM_envelope_calc_exp(out + (envelope << 3)) * neg; } /* ------------------------------------------------------------------------- */ static int13 ESFM_envelope_calc_sin5(uint10 phase, uint10 envelope) { uint16 out = 0; phase &= 0x3ff; if (phase & 0x200) { out = 0x1000; } else if (phase & 0x80) { out = logsinrom[((phase ^ 0xff) << 1) & 0xff]; } else { out = logsinrom[(phase << 1) & 0xff]; } return ESFM_envelope_calc_exp(out + (envelope << 3)); } /* ------------------------------------------------------------------------- */ static int13 ESFM_envelope_calc_sin6(uint10 phase, uint10 envelope) { int13 neg = 1; phase &= 0x3ff; if (phase & 0x200) { neg = -1; } return ESFM_envelope_calc_exp(envelope << 3) * neg; } /* ------------------------------------------------------------------------- */ static int13 ESFM_envelope_calc_sin7(uint10 phase, uint10 envelope) { uint16 out = 0; int13 neg = 1; phase &= 0x3ff; if (phase & 0x200) { neg = -1; phase = (phase & 0x1ff) ^ 0x1ff; } out = phase << 3; return ESFM_envelope_calc_exp(out + (envelope << 3)) * neg; } /* ------------------------------------------------------------------------- */ static const envelope_sinfunc envelope_sin[8] = { ESFM_envelope_calc_sin0, ESFM_envelope_calc_sin1, ESFM_envelope_calc_sin2, ESFM_envelope_calc_sin3, ESFM_envelope_calc_sin4, ESFM_envelope_calc_sin5, ESFM_envelope_calc_sin6, ESFM_envelope_calc_sin7 }; /* ------------------------------------------------------------------------- */ static void ESFM_envelope_calc(esfm_slot *slot) { uint8 nonzero; uint8 rate; uint5 rate_hi; uint2 rate_lo; uint4 reg_rate = 0; uint4 ks; uint8 eg_shift, shift; bool eg_off; uint9 eg_rout; int16 eg_inc; bool reset = 0; bool key_on; bool key_on_signal; key_on = *slot->in.key_on; if (!slot->chip->native_mode) { int pair_primary_idx = emu_4op_secondary_to_primary[slot->channel->channel_idx]; if (pair_primary_idx >= 0) { esfm_channel *pair_primary = &slot->channel->chip->channels[pair_primary_idx]; if (pair_primary->emu_mode_4op_enable) { key_on = *pair_primary->slots[0].in.key_on; } } else if ((slot->channel->channel_idx == 7 || slot->channel->channel_idx == 8) && slot->slot_idx == 1) { key_on = slot->channel->key_on_2; } } slot->in.eg_output = slot->in.eg_position + (slot->t_level << 2) + (slot->in.eg_ksl_offset >> kslshift[slot->ksl]); if (slot->tremolo_en) { uint8 tremolo; if (slot->chip->native_mode) { tremolo = slot->channel->chip->tremolo >> ((!slot->tremolo_deep << 1) + 2); } else { tremolo = slot->channel->chip->tremolo >> ((!slot->chip->emu_tremolo_deep << 1) + 2); } slot->in.eg_output += tremolo; } if (slot->in.eg_delay_run && slot->in.eg_delay_counter < 32768) { slot->in.eg_delay_counter++; } // triggers on key-on edge if (key_on && !slot->in.key_on_gate) { slot->in.eg_delay_run = 1; slot->in.eg_delay_counter = 0; slot->in.eg_delay_transitioned_01 = 0; slot->in.eg_delay_transitioned_01_gate = 0; slot->in.eg_delay_transitioned_10 = 0; slot->in.eg_delay_transitioned_10_gate = 0; slot->in.eg_delay_counter_compare = 0; if (slot->env_delay > 0) { slot->in.eg_delay_counter_compare = 256 << slot->env_delay; } } else if (!key_on) { slot->in.eg_delay_run = 0; } // TODO: is this really how the chip behaves? Can it only transition the envelope delay once? Am I implementing this in a sane way? I feel like this is a roundabout hack. if ((slot->in.eg_delay_transitioned_10 && !slot->in.eg_delay_transitioned_10_gate) || (slot->in.eg_delay_transitioned_01 && !slot->in.eg_delay_transitioned_01_gate) ) { slot->in.eg_delay_counter_compare = 0; if (slot->env_delay > 0) { slot->in.eg_delay_counter_compare = 256 << slot->env_delay; } if (slot->in.eg_delay_transitioned_10) { slot->in.eg_delay_transitioned_10_gate = 1; } if (slot->in.eg_delay_transitioned_01) { slot->in.eg_delay_transitioned_01_gate = 1; } } if (key_on && ((slot->in.eg_delay_counter >= slot->in.eg_delay_counter_compare) || !slot->chip->native_mode)) { key_on_signal = 1; } else { key_on_signal = 0; } if (key_on && slot->in.eg_state == EG_RELEASE) { if ((slot->in.eg_delay_counter >= slot->in.eg_delay_counter_compare) || !slot->chip->native_mode) { reset = 1; reg_rate = slot->attack_rate; } else { reg_rate = slot->release_rate; } } else { switch (slot->in.eg_state) { case EG_ATTACK: reg_rate = slot->attack_rate; break; case EG_DECAY: reg_rate = slot->decay_rate; break; case EG_SUSTAIN: if (!slot->env_sustaining) { reg_rate = slot->release_rate; } break; case EG_RELEASE: reg_rate = slot->release_rate; break; } } slot->in.key_on_gate = key_on; slot->in.phase_reset = reset; ks = slot->in.keyscale >> ((!slot->ksr) << 1); nonzero = (reg_rate != 0); rate = ks + (reg_rate << 2); rate_hi = rate >> 2; rate_lo = rate & 0x03; if (rate_hi & 0x10) { rate_hi = 0x0f; } eg_shift = rate_hi + slot->chip->eg_clocks; shift = 0; if (nonzero) { if (rate_hi < 12) { if (slot->chip->eg_tick) { switch (eg_shift) { case 12: shift = 1; break; case 13: shift = (rate_lo >> 1) & 0x01; break; case 14: shift = rate_lo & 0x01; break; default: break; } } } else { shift = (rate_hi & 0x03) + eg_incstep[rate_lo][slot->chip->global_timer & 0x03]; if (shift & 0x04) { shift = 0x03; } if (!shift) { shift = slot->chip->eg_tick; } } } eg_rout = slot->in.eg_position; eg_inc = 0; eg_off = 0; /* Instant attack */ if (reset && rate_hi == 0x0f) { eg_rout = 0x00; } /* Envelope off */ if ((slot->in.eg_position & 0x1f8) == 0x1f8) { eg_off = 1; } if (slot->in.eg_state != EG_ATTACK && !reset && eg_off) { eg_rout = 0x1ff; } switch (slot->in.eg_state) { case EG_ATTACK: if (slot->in.eg_position == 0) { slot->in.eg_state = EG_DECAY; } else if (key_on_signal && shift > 0 && rate_hi != 0x0f) { eg_inc = ~slot->in.eg_position >> (4 - shift); } break; case EG_DECAY: if ((slot->in.eg_position >> 4) == slot->sustain_lvl) { slot->in.eg_state = EG_SUSTAIN; } else if (!eg_off && !reset && shift > 0) { eg_inc = 1 << (shift - 1); } break; case EG_SUSTAIN: case EG_RELEASE: if (!eg_off && !reset && shift > 0) { eg_inc = 1 << (shift - 1); } break; } slot->in.eg_position = (eg_rout + eg_inc) & 0x1ff; /* Key off */ if (reset) { slot->in.eg_state = EG_ATTACK; } if (!key_on_signal) { slot->in.eg_state = EG_RELEASE; } } /* ------------------------------------------------------------------------- */ static void ESFM_phase_generate(esfm_slot *slot) { esfm_chip *chip; uint10 f_num; uint32 basefreq; bool rm_xor, n_bit; uint23 noise; uint10 phase; chip = slot->chip; f_num = slot->f_num; if (slot->vibrato_en) { int8_t range; uint8_t vibpos; range = (f_num >> 7) & 7; vibpos = chip->vibrato_pos; if (!(vibpos & 3)) { range = 0; } else if (vibpos & 1) { range >>= 1; } range >>= !slot->vibrato_deep; if (vibpos & 4) { range = -range; } f_num += range; } basefreq = (f_num << slot->block) >> 1; phase = (uint10)(slot->in.phase_acc >> 9); if (slot->in.phase_reset) { slot->in.phase_acc = 0; } slot->in.phase_acc += (basefreq * mt[slot->mult]) >> 1; slot->in.phase_acc &= (1 << 19) - 1; slot->in.phase_out = phase; /* Noise mode (rhythm) sounds */ noise = chip->lfsr; if (slot->slot_idx == 3 && slot->rhy_noise) { esfm_slot *prev_slot = &slot->channel->slots[2]; chip->rm_hh_bit2 = (phase >> 2) & 1; chip->rm_hh_bit3 = (phase >> 3) & 1; chip->rm_hh_bit7 = (phase >> 7) & 1; chip->rm_hh_bit8 = (phase >> 8) & 1; chip->rm_tc_bit3 = (prev_slot->in.phase_out >> 3) & 1; chip->rm_tc_bit5 = (prev_slot->in.phase_out >> 5) & 1; rm_xor = (chip->rm_hh_bit2 ^ chip->rm_hh_bit7) | (chip->rm_hh_bit3 ^ chip->rm_tc_bit5) | (chip->rm_tc_bit3 ^ chip->rm_tc_bit5); switch(slot->rhy_noise) { case 1: // SD slot->in.phase_out = (chip->rm_hh_bit8 << 9) | ((chip->rm_hh_bit8 ^ (noise & 1)) << 8); break; case 2: // HH slot->in.phase_out = rm_xor << 9; if (rm_xor ^ (noise & 1)) { slot->in.phase_out |= 0xd0; } else { slot->in.phase_out |= 0x34; } break; case 3: // TC slot->in.phase_out = (rm_xor << 9) | 0x80; break; } } n_bit = ((noise >> 14) ^ noise) & 0x01; chip->lfsr = (noise >> 1) | (n_bit << 22); } /* ------------------------------------------------------------------------- */ static void ESFM_phase_generate_emu(esfm_slot *slot) { esfm_chip *chip; uint3 block; uint10 f_num; uint32 basefreq; bool rm_xor, n_bit; uint23 noise; uint10 phase; int pair_primary_idx; chip = slot->chip; block = slot->channel->slots[0].block; f_num = slot->channel->slots[0].f_num; pair_primary_idx = emu_4op_secondary_to_primary[slot->channel->channel_idx]; if (pair_primary_idx >= 0) { esfm_channel *pair_primary = &slot->channel->chip->channels[pair_primary_idx]; if (pair_primary->emu_mode_4op_enable) { block = pair_primary->slots[0].block; f_num = pair_primary->slots[0].f_num; } } if (slot->vibrato_en) { int8_t range; uint8_t vibpos; range = (f_num >> 7) & 7; vibpos = chip->vibrato_pos; if (!(vibpos & 3)) { range = 0; } else if (vibpos & 1) { range >>= 1; } range >>= !chip->emu_vibrato_deep; if (vibpos & 4) { range = -range; } f_num += range; } basefreq = (f_num << block) >> 1; phase = (uint10)(slot->in.phase_acc >> 9); if (slot->in.phase_reset) { slot->in.phase_acc = 0; } slot->in.phase_acc += (basefreq * mt[slot->mult]) >> 1; slot->in.phase_acc &= (1 << 19) - 1; slot->in.phase_out = phase; /* Noise mode (rhythm) sounds */ noise = chip->lfsr; // HH if (slot->channel->channel_idx == 7 && slot->slot_idx == 0) { chip->rm_hh_bit2 = (phase >> 2) & 1; chip->rm_hh_bit3 = (phase >> 3) & 1; chip->rm_hh_bit7 = (phase >> 7) & 1; chip->rm_hh_bit8 = (phase >> 8) & 1; } // TC if (slot->channel->channel_idx == 8 && slot->slot_idx == 1) { chip->rm_tc_bit3 = (phase >> 3) & 1; chip->rm_tc_bit5 = (phase >> 5) & 1; } if (chip->emu_rhy_mode_flags & 0x20) { rm_xor = (chip->rm_hh_bit2 ^ chip->rm_hh_bit7) | (chip->rm_hh_bit3 ^ chip->rm_tc_bit5) | (chip->rm_tc_bit3 ^ chip->rm_tc_bit5); if (slot->channel->channel_idx == 7) { if (slot->slot_idx == 0) { // HH slot->in.phase_out = rm_xor << 9; if (rm_xor ^ (noise & 1)) { slot->in.phase_out |= 0xd0; } else { slot->in.phase_out |= 0x34; } } else if (slot->slot_idx == 1) { // SD slot->in.phase_out = (chip->rm_hh_bit8 << 9) | ((chip->rm_hh_bit8 ^ (noise & 1)) << 8); } } else if (slot->channel->channel_idx == 8 && slot->slot_idx == 1) { // TC slot->in.phase_out = (rm_xor << 9) | 0x80; } } n_bit = ((noise >> 14) ^ noise) & 0x01; chip->lfsr = (noise >> 1) | (n_bit << 22); } /** * TODO: Figure out what's ACTUALLY going on inside the real chip! * This is not accurate at all, but it's the closest I was able to get with * empirical testing (and it's closer than nothing). */ /* ------------------------------------------------------------------------- */ static int16 ESFM_slot3_noise3_mod_input_calc(esfm_slot *slot) { esfm_channel *channel = slot->channel; envelope_sinfunc wavegen = envelope_sin[channel->slots[2].waveform]; int16 phase; int13 output_buf = *channel->slots[1].in.mod_input; int i; // Go through previous slots' partial results and recalculate outputs // (we skip slot 0 because its calculation happens at the end, not at the beginning) for (i = 1; i < 3; i++) { // double the pitch phase = channel->slots[i].in.phase_acc >> 8; if (channel->slots[i].mod_in_level) { phase += output_buf >> (7 - channel->slots[i].mod_in_level); } output_buf = wavegen((uint10)(phase & 0x3ff), channel->slots[i].in.eg_output); } return output_buf >> (8 - slot->mod_in_level); } /* ------------------------------------------------------------------------- */ static void ESFM_slot_generate(esfm_slot *slot) { envelope_sinfunc wavegen = envelope_sin[slot->waveform]; int16 phase = slot->in.phase_out; if (slot->mod_in_level) { if (slot->slot_idx == 3 && slot->rhy_noise == 3) { phase += ESFM_slot3_noise3_mod_input_calc(slot); } else { phase += *slot->in.mod_input >> (7 - slot->mod_in_level); } } slot->in.output = wavegen((uint10)(phase & 0x3ff), slot->in.eg_output); if (slot->output_level) { int13 output_value = slot->in.output >> (7 - slot->output_level); slot->channel->output[0] += output_value & slot->out_enable[0]; slot->channel->output[1] += output_value & slot->out_enable[1]; } } /* ------------------------------------------------------------------------- */ static void ESFM_slot_generate_emu(esfm_slot *slot) { esfm_chip *chip = slot->chip; envelope_sinfunc wavegen = envelope_sin[ slot->waveform & (chip->emu_newmode != 0 ? 0x07 : 0x03)]; bool rhythm_slot_double_volume = (slot->chip->emu_rhy_mode_flags & 0x20) != 0 && slot->channel->channel_idx >= 6 && slot->channel->channel_idx < 9; int16 phase = slot->in.phase_out; int14 output_value; phase += *slot->in.mod_input & slot->in.emu_mod_enable; slot->in.output = wavegen((uint10)(phase & 0x3ff), slot->in.eg_output); output_value = (slot->in.output & slot->in.emu_output_enable) << rhythm_slot_double_volume; if (chip->emu_newmode) { slot->channel->output[0] += output_value & slot->channel->slots[0].out_enable[0]; slot->channel->output[1] += output_value & slot->channel->slots[0].out_enable[1]; } else { slot->channel->output[0] += output_value; slot->channel->output[1] += output_value; } } /* ------------------------------------------------------------------------- */ static void ESFM_slot_calc_feedback(esfm_slot *slot) { esfm_chip *chip = slot->chip; uint32 basefreq, phase_offset; uint3 block; uint10 f_num; int13 in1 = 0, in2 = 0, wave_out; int16 phase, phase_feedback; uint19 regressed_phase; int iter_counter; envelope_sinfunc wavegen; if (slot->mod_in_level) { if (chip->native_mode) { wavegen = envelope_sin[slot->waveform]; } else { wavegen = envelope_sin[slot->waveform & (0x03 | (0x02 << (chip->emu_newmode != 0)))]; } f_num = slot->f_num; block = slot->block; basefreq = (f_num << block) >> 1; phase_offset = (basefreq * mt[slot->mult]) >> 1; for (iter_counter = 28; iter_counter >= 0; iter_counter--) { regressed_phase = (uint19)((uint32)slot->in.phase_acc - iter_counter * phase_offset) & ((1 << 19) - 1); phase = (int16)(regressed_phase >> 9); phase_feedback = (in1 + in2) >> 2; phase += phase_feedback >> (7 - slot->mod_in_level); wave_out = wavegen((uint10)(phase & 0x3ff), slot->in.eg_output); in2 = in1; in1 = wave_out; } // TODO: Figure out - is this how the ESFM chip does it, like the // patent literally says? (it's really hacky...) // slot->in.output = wave_out; // This would be the more canonical way to do it, reusing the rest of // the synthesis pipeline to finish the calculation: if (chip->native_mode) { slot->in.feedback_buf = phase_feedback; } else { slot->in.feedback_buf = phase_feedback >> (7 - slot->mod_in_level); } } } /* ------------------------------------------------------------------------- */ static void ESFM_process_channel(esfm_channel *channel) { int slot_idx; channel->output[0] = channel->output[1] = 0; for (slot_idx = 0; slot_idx < 4; slot_idx++) { esfm_slot *slot = &channel->slots[slot_idx]; ESFM_envelope_calc(slot); ESFM_phase_generate(slot); if(slot_idx > 0) { ESFM_slot_generate(slot); } } // ESFM feedback calculation takes a large number of clock cycles, so // defer slot 0 generation to the end // TODO: verify this behavior on real hardware ESFM_slot_calc_feedback(&channel->slots[0]); ESFM_slot_generate(&channel->slots[0]); } /* ------------------------------------------------------------------------- */ static void ESFM_process_channel_emu(esfm_channel *channel) { int slot_idx; channel->output[0] = channel->output[1] = 0; for (slot_idx = 0; slot_idx < 2; slot_idx++) { esfm_slot *slot = &channel->slots[slot_idx]; ESFM_envelope_calc(slot); ESFM_phase_generate_emu(slot); if(slot_idx > 0) { ESFM_slot_generate_emu(slot); } } // ESFM feedback calculation takes a large number of clock cycles, so // defer slot 0 generation to the end // TODO: verify this behavior on real hardware if (channel->slots[0].in.mod_input == &channel->slots[0].in.feedback_buf) { ESFM_slot_calc_feedback(&channel->slots[0]); } ESFM_slot_generate_emu(&channel->slots[0]); } /* ------------------------------------------------------------------------- */ static int16_t ESFM_clip_sample(int32 sample) { // TODO: Supposedly, the real ESFM chip actually overflows rather than // clipping. Verify that. if (sample > 32767) { sample = 32767; } else if (sample < -32768) { sample = -32768; } return (int16_t)sample; } /* ------------------------------------------------------------------------- */ static void ESFM_update_timers(esfm_chip *chip) { // Tremolo if ((chip->global_timer & 0x3f) == 0x3f) { chip->tremolo_pos = (chip->tremolo_pos + 1) % 210; if (chip->tremolo_pos < 105) { chip->tremolo = chip->tremolo_pos; } else { chip->tremolo = (210 - chip->tremolo_pos); } } // Vibrato if ((chip->global_timer & 0x3ff) == 0x3ff) { chip->vibrato_pos = (chip->vibrato_pos + 1) & 0x07; } chip->global_timer = (chip->global_timer + 1) & 0x3ff; // Envelope generator dither clocks chip->eg_clocks = 0; if (chip->eg_timer) { uint8 shift = 0; while (shift < 36 && ((chip->eg_timer >> shift) & 1) == 0) { shift++; } if (shift <= 12) { chip->eg_clocks = shift + 1; } } if (chip->eg_tick || chip->eg_timer_overflow) { if (chip->eg_timer == (1llu << 36) - 1) { chip->eg_timer = 0; chip->eg_timer_overflow = 1; } else { chip->eg_timer++; chip->eg_timer_overflow = 0; } } chip->eg_tick ^= 1; } #define KEY_ON_REGS_START (18 * 4 * 8) /* ------------------------------------------------------------------------- */ int ESFM_reg_write_chan_idx(esfm_chip *chip, uint16_t reg) { int which_reg = -1; if (chip->native_mode) { bool is_key_on_reg = reg >= KEY_ON_REGS_START && reg < (KEY_ON_REGS_START + 20); if (is_key_on_reg) { which_reg = reg - KEY_ON_REGS_START; } } else { uint8_t reg_low = reg & 0xff; bool high = reg & 0x100; bool is_key_on_reg = reg_low >= 0xb0 && reg_low < 0xb9; if (is_key_on_reg) { which_reg = (reg_low & 0x0f) + high * 9; } } return which_reg; } /* ------------------------------------------------------------------------- */ void ESFM_update_write_buffer(esfm_chip *chip) { esfm_write_buf *write_buf; bool note_off_written[20]; bool bassdrum_written = false; int i; for (i = 0; i < 20; i++) { note_off_written[i] = false; } while((write_buf = &chip->write_buf[chip->write_buf_start]), write_buf->valid && write_buf->timestamp <= chip->write_buf_timestamp) { int is_which_note_on_reg = ESFM_reg_write_chan_idx(chip, write_buf->address); if (is_which_note_on_reg >= 0) { if ((chip->native_mode && (write_buf->data & 0x01) == 0) || (!chip->native_mode && (write_buf->data & 0x20) == 0) ) { // this is a note off command; note down that we got note off for this channel note_off_written[is_which_note_on_reg] = true; } else { // this is a note on command; have we gotten a note off for this channel in this cycle? if (note_off_written[is_which_note_on_reg]) { // we have a conflict; let the note off be processed first and defer the // rest of the buffer to the next cycle break; } } } if ((chip->native_mode && write_buf->address == 0x4bd) || (!chip->native_mode && (write_buf->address & 0xff) == 0xbd) ) { // bassdrum register write (rhythm mode note-on/off control) // have we already written to the bassdrum register in this cycle if (bassdrum_written) { // we have a conflict break; } bassdrum_written = true; } write_buf->valid = 0; ESFM_write_reg(chip, write_buf->address, write_buf->data); chip->write_buf_start = (chip->write_buf_start + 1) % ESFM_WRITEBUF_SIZE; } chip->write_buf_timestamp++; } /* ------------------------------------------------------------------------- */ void ESFM_generate(esfm_chip *chip, int16_t *buf) { int channel_idx; chip->output_accm[0] = chip->output_accm[1] = 0; for (channel_idx = 0; channel_idx < 18; channel_idx++) { esfm_channel *channel = &chip->channels[channel_idx]; if (chip->native_mode) { ESFM_process_channel(channel); } else { ESFM_process_channel_emu(channel); } chip->output_accm[0] += channel->output[0]; chip->output_accm[1] += channel->output[1]; } buf[0] = ESFM_clip_sample(chip->output_accm[0]); buf[1] = ESFM_clip_sample(chip->output_accm[1]); ESFM_update_timers(chip); ESFM_update_write_buffer(chip); } /* ------------------------------------------------------------------------- */ int16_t ESFM_get_channel_output_native(esfm_chip *chip, int channel_idx) { int16_t result; int32_t temp_mix = 0; int i; if (channel_idx < 0 || channel_idx >= 18) { return 0; } for (i = 0; i < 4; i++) { esfm_slot *slot = &chip->channels[channel_idx].slots[i]; if (slot->output_level) { int13 output_value = slot->in.output >> (7 - slot->output_level); temp_mix += output_value & slot->out_enable[0]; temp_mix += output_value & slot->out_enable[1]; } } if (temp_mix > 32767) { temp_mix = 32767; } else if (temp_mix < -32768) { temp_mix = -32768; } result = temp_mix; return result; } /* ------------------------------------------------------------------------- */ void ESFM_generate_stream(esfm_chip *chip, int16_t *sndptr, uint32_t num_samples) { uint32_t i; for (i = 0; i < num_samples; i++) { ESFM_generate(chip, sndptr); sndptr += 2; } }