/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:45:49 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 3 -name t1bv_3 -include dft/simd/t1b.h -sign 1 */ /* * This function contains 8 FP additions, 8 FP multiplications, * (or, 5 additions, 5 multiplications, 3 fused multiply/add), * 12 stack variables, 2 constants, and 6 memory accesses */ #include "dft/simd/t1b.h" static void t1bv_3(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(3, rs)) { V T1, T3, T5, T6, T2, T4, T7, T8; T1 = LD(&(x[0]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T3 = BYTW(&(W[0]), T2); T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T5 = BYTW(&(W[TWVL * 2]), T4); T6 = VADD(T3, T5); ST(&(x[0]), VADD(T1, T6), ms, &(x[0])); T7 = VFNMS(LDK(KP500000000), T6, T1); T8 = VMUL(LDK(KP866025403), VSUB(T3, T5)); ST(&(x[WS(rs, 1)]), VFMAI(T8, T7), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 2)]), VFNMSI(T8, T7), ms, &(x[0])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 3, XSIMD_STRING("t1bv_3"), twinstr, &GENUS, { 5, 5, 3, 0 }, 0, 0, 0 }; void XSIMD(codelet_t1bv_3) (planner *p) { X(kdft_dit_register) (p, t1bv_3, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 3 -name t1bv_3 -include dft/simd/t1b.h -sign 1 */ /* * This function contains 8 FP additions, 6 FP multiplications, * (or, 7 additions, 5 multiplications, 1 fused multiply/add), * 12 stack variables, 2 constants, and 6 memory accesses */ #include "dft/simd/t1b.h" static void t1bv_3(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP500000000, +0.500000000000000000000000000000000000000000000); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(3, rs)) { V T6, T2, T4, T7, T1, T3, T5, T8; T6 = LD(&(x[0]), ms, &(x[0])); T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T2 = BYTW(&(W[0]), T1); T3 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T4 = BYTW(&(W[TWVL * 2]), T3); T7 = VADD(T2, T4); ST(&(x[0]), VADD(T6, T7), ms, &(x[0])); T5 = VBYI(VMUL(LDK(KP866025403), VSUB(T2, T4))); T8 = VFNMS(LDK(KP500000000), T7, T6); ST(&(x[WS(rs, 1)]), VADD(T5, T8), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 2)]), VSUB(T8, T5), ms, &(x[0])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 3, XSIMD_STRING("t1bv_3"), twinstr, &GENUS, { 7, 5, 1, 0 }, 0, 0, 0 }; void XSIMD(codelet_t1bv_3) (planner *p) { X(kdft_dit_register) (p, t1bv_3, &desc); } #endif