/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * VSX SIMD implementation added 2015 Erik Lindahl. * Erik Lindahl places his modifications in the public domain. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) # error "VSX only works in single or double precision" #endif #ifdef FFTW_SINGLE # define DS(d,s) s /* single-precision option */ # define SUFF(name) name ## s #else # define DS(d,s) d /* double-precision option */ # define SUFF(name) name ## d #endif #define SIMD_SUFFIX _vsx /* for renaming */ #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */ #define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2)) #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK #include #include typedef DS(vector double,vector float) V; #define VADD(a,b) vec_add(a,b) #define VSUB(a,b) vec_sub(a,b) #define VMUL(a,b) vec_mul(a,b) #define VXOR(a,b) vec_xor(a,b) #define UNPCKL(a,b) vec_mergel(a,b) #define UNPCKH(a,b) vec_mergeh(a,b) #ifdef FFTW_SINGLE # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}; vec_perm(a,a,perm); }) # define VDUPH(a) ({ const vector unsigned char perm = {4,5,6,7,4,5,6,7,12,13,14,15,12,13,14,15}; vec_perm(a,a,perm); }) #else # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7}; vec_perm(a,a,perm); }) # define VDUPH(a) ({ const vector unsigned char perm = {8,9,10,11,12,13,14,15,8,9,10,11,12,13,14,15}; vec_perm(a,a,perm); }) #endif static inline V LDK(R f) { return vec_splats(f); } #define DVK(var, val) const R var = K(val) static inline V VCONJ(V x) { const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0))); return vec_xor(x, pmpm); } static inline V LDA(const R *x, INT ivs, const R *aligned_like) { #ifdef __ibmxl__ return vec_xl(0,(DS(double,float) *)x); #else return (*(const V *)(x)); #endif } static inline void STA(R *x, V v, INT ovs, const R *aligned_like) { #ifdef __ibmxl__ vec_xst(v,0,x); #else *(V *)x = v; #endif } static inline V FLIP_RI(V x) { #ifdef FFTW_SINGLE const vector unsigned char perm = { 4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11 }; #else const vector unsigned char perm = { 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 }; #endif return vec_perm(x,x,perm); } #ifdef FFTW_SINGLE static inline V LD(const R *x, INT ivs, const R *aligned_like) { const vector unsigned char perm = {0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23}; return vec_perm((vector float)vec_splats(*(double *)(x)), (vector float)vec_splats(*(double *)(x+ivs)),perm); } static inline void ST(R *x, V v, INT ovs, const R *aligned_like) { *(double *)(x+ovs) = vec_extract( (vector double)v, 1 ); *(double *)x = vec_extract( (vector double)v, 0 ); } #else /* DOUBLE */ # define LD LDA # define ST STA #endif #define STM2 DS(STA,ST) #define STN2(x, v0, v1, ovs) /* nop */ #ifdef FFTW_SINGLE # define STM4(x, v, ovs, aligned_like) /* no-op */ static inline void STN4(R *x, V v0, V v1, V v2, V v3, int ovs) { V xxx0, xxx1, xxx2, xxx3; xxx0 = vec_mergeh(v0,v1); xxx1 = vec_mergel(v0,v1); xxx2 = vec_mergeh(v2,v3); xxx3 = vec_mergel(v2,v3); *(double *)x = vec_extract( (vector double)xxx0, 0 ); *(double *)(x+ovs) = vec_extract( (vector double)xxx0, 1 ); *(double *)(x+2*ovs) = vec_extract( (vector double)xxx1, 0 ); *(double *)(x+3*ovs) = vec_extract( (vector double)xxx1, 1 ); *(double *)(x+2) = vec_extract( (vector double)xxx2, 0 ); *(double *)(x+ovs+2) = vec_extract( (vector double)xxx2, 1 ); *(double *)(x+2*ovs+2) = vec_extract( (vector double)xxx3, 0 ); *(double *)(x+3*ovs+2) = vec_extract( (vector double)xxx3, 1 ); } #else /* !FFTW_SINGLE */ static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ x[0] = vec_extract(v,0); x[ovs] = vec_extract(v,1); } # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */ #endif static inline V VBYI(V x) { /* FIXME [matteof 2017-09-21] It is possible to use vpermxor(), but gcc and xlc treat the permutation bits differently, and gcc-6 seems to generate incorrect code when using __builtin_crypto_vpermxor() (i.e., VBYI() works for a small test case but fails in the large). Punt on vpermxor() for now and do the simple thing. */ return FLIP_RI(VCONJ(x)); } /* FMA support */ #define VFMA(a, b, c) vec_madd(a,b,c) #define VFNMS(a, b, c) vec_nmsub(a,b,c) #define VFMS(a, b, c) vec_msub(a,b,c) #define VFMAI(b, c) VADD(c, VBYI(b)) #define VFNMSI(b, c) VSUB(c, VBYI(b)) #define VFMACONJ(b,c) VADD(VCONJ(b),c) #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) static inline V VZMUL(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); tr = VMUL(sr, tr); sr = VBYI(sr); return VFMA(ti, sr, tr); } static inline V VZMULJ(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); tr = VMUL(sr, tr); sr = VBYI(sr); return VFNMS(ti, sr, tr); } static inline V VZMULI(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); ti = VMUL(ti, sr); sr = VBYI(sr); return VFMS(tr, sr, ti); } static inline V VZMULIJ(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); ti = VMUL(ti, sr); sr = VBYI(sr); return VFMA(tr, sr, ti); } /* twiddle storage #1: compact, slower */ #ifdef FFTW_SINGLE # define VTW1(v,x) \ {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} static inline V BYTW1(const R *t, V sr) { V tx = LDA(t,0,t); V tr = UNPCKH(tx, tx); V ti = UNPCKL(tx, tx); tr = VMUL(tr, sr); sr = VBYI(sr); return VFMA(ti, sr, tr); } static inline V BYTWJ1(const R *t, V sr) { V tx = LDA(t,0,t); V tr = UNPCKH(tx, tx); V ti = UNPCKL(tx, tx); tr = VMUL(tr, sr); sr = VBYI(sr); return VFNMS(ti, sr, tr); } #else /* !FFTW_SINGLE */ # define VTW1(v,x) {TW_CEXP, v, x} static inline V BYTW1(const R *t, V sr) { V tx = LD(t, 1, t); return VZMUL(tx, sr); } static inline V BYTWJ1(const R *t, V sr) { V tx = LD(t, 1, t); return VZMULJ(tx, sr); } #endif #define TWVL1 (VL) /* twiddle storage #2: twice the space, faster (when in cache) */ #ifdef FFTW_SINGLE # define VTW2(v,x) \ {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} #else /* !FFTW_SINGLE */ # define VTW2(v,x) \ {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x} #endif #define TWVL2 (2 * VL) static inline V BYTW2(const R *t, V sr) { V si = FLIP_RI(sr); V ti = LDA(t+2*VL,0,t); V tt = VMUL(ti, si); V tr = LDA(t,0,t); return VFMA(tr, sr, tt); } static inline V BYTWJ2(const R *t, V sr) { V si = FLIP_RI(sr); V tr = LDA(t,0,t); V tt = VMUL(tr, sr); V ti = LDA(t+2*VL,0,t); return VFNMS(ti, si, tt); } /* twiddle storage #3 */ #ifdef FFTW_SINGLE # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} # define TWVL3 (VL) #else # define VTW3(v,x) VTW1(v,x) # define TWVL3 TWVL1 #endif /* twiddle storage for split arrays */ #ifdef FFTW_SINGLE # define VTWS(v,x) \ {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} #else # define VTWS(v,x) \ {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} #endif #define TWVLS (2 * VL) #define VLEAVE() /* nothing */ #include "simd-common.h"