/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:47:22 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include rdft/simd/hc2cfv.h */ /* * This function contains 61 FP additions, 60 FP multiplications, * (or, 33 additions, 32 multiplications, 28 fused multiply/add), * 77 stack variables, 5 constants, and 20 memory accesses */ #include "rdft/simd/hc2cfv.h" static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) { V T8, T11, T12, TG, TH, TP, Tp, TA, TB, TS, TV, TW, TC, TX, TI; V TM, TF, TL, TD, TE, TJ, TO, TK, TN, T13, T17, T10, T16, TY, TZ; V T14, T19, T15, T18; { V T3, To, TU, Th, TT, TR, Tz, Tu, TQ, T7, T1, T2, Tw, T5, T6; V Tr, Tc, Tj, Tg, Ty, Tn, Tt, Tv, Tq, Ta, Tb, T9, Ti, Te, Tf; V Td, Tx, Tl, Tm, Tk, Ts, T4; T1 = LD(&(Rp[0]), ms, &(Rp[0])); T2 = LD(&(Rm[0]), -ms, &(Rm[0])); Tv = LDW(&(W[0])); Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1)); T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); Tq = LDW(&(W[TWVL * 6])); Tr = VZMULJ(Tq, VFMACONJ(T6, T5)); Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); T9 = LDW(&(W[TWVL * 2])); Tc = VZMULJ(T9, VFMACONJ(Tb, Ta)); Ti = LDW(&(W[TWVL * 4])); Tj = VZMULIJ(Ti, VFNMSCONJ(Tb, Ta)); Te = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); Tf = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); Td = LDW(&(W[TWVL * 12])); Tg = VZMULIJ(Td, VFNMSCONJ(Tf, Te)); Tx = LDW(&(W[TWVL * 10])); Ty = VZMULJ(Tx, VFMACONJ(Tf, Te)); Tl = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); Tm = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); Tk = LDW(&(W[TWVL * 14])); Tn = VZMULJ(Tk, VFMACONJ(Tm, Tl)); Ts = LDW(&(W[TWVL * 16])); Tt = VZMULIJ(Ts, VFNMSCONJ(Tm, Tl)); T3 = VFMACONJ(T2, T1); To = VSUB(Tj, Tn); TU = VADD(Tr, Tt); Th = VSUB(Tc, Tg); TT = VADD(Tw, Ty); TR = VADD(Tj, Tn); Tz = VSUB(Tw, Ty); Tu = VSUB(Tr, Tt); TQ = VADD(Tc, Tg); T4 = LDW(&(W[TWVL * 8])); T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5)); T8 = VSUB(T3, T7); T11 = VSUB(TQ, TR); T12 = VSUB(TU, TT); TG = VADD(Tz, Tu); TH = VADD(Th, To); TP = VADD(T3, T7); Tp = VSUB(Th, To); TA = VSUB(Tu, Tz); TB = VADD(Tp, TA); TS = VADD(TQ, TR); TV = VADD(TT, TU); TW = VADD(TS, TV); } TC = VMUL(LDK(KP500000000), VADD(T8, TB)); ST(&(Rp[0]), TC, ms, &(Rp[0])); TX = VCONJ(VMUL(LDK(KP500000000), VADD(TP, TW))); ST(&(Rm[WS(rs, 4)]), TX, -ms, &(Rm[0])); TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TH, TG)); TM = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TG, TH)); TD = VFNMS(LDK(KP250000000), TB, T8); TE = VSUB(Tp, TA); TF = VFNMS(LDK(KP559016994), TE, TD); TL = VFMA(LDK(KP559016994), TE, TD); TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TI, TF))); ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)])); TO = VMUL(LDK(KP500000000), VFMAI(TM, TL)); ST(&(Rp[WS(rs, 4)]), TO, ms, &(Rp[0])); TK = VMUL(LDK(KP500000000), VFMAI(TI, TF)); ST(&(Rp[WS(rs, 2)]), TK, ms, &(Rp[0])); TN = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TM, TL))); ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)])); T13 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T12, T11)); T17 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T11, T12)); TY = VFNMS(LDK(KP250000000), TW, TP); TZ = VSUB(TS, TV); T10 = VFMA(LDK(KP559016994), TZ, TY); T16 = VFNMS(LDK(KP559016994), TZ, TY); T14 = VMUL(LDK(KP500000000), VFNMSI(T13, T10)); ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)])); T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16))); ST(&(Rm[WS(rs, 2)]), T19, -ms, &(Rm[0])); T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, T10))); ST(&(Rm[0]), T15, -ms, &(Rm[0])); T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16)); ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), VTW(1, 6), VTW(1, 7), VTW(1, 8), VTW(1, 9), { TW_NEXT, VL, 0 } }; static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, { 33, 32, 28, 0 } }; void XSIMD(codelet_hc2cfdftv_10) (planner *p) { X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include rdft/simd/hc2cfv.h */ /* * This function contains 61 FP additions, 38 FP multiplications, * (or, 55 additions, 32 multiplications, 6 fused multiply/add), * 82 stack variables, 5 constants, and 20 memory accesses */ #include "rdft/simd/hc2cfv.h" static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP125000000, +0.125000000000000000000000000000000000000000000); DVK(KP279508497, +0.279508497187473712051146708591409529430077295); DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) { V Tl, Tt, Tu, TY, TZ, T10, Tz, TE, TF, TV, TW, TX, Ta, TU, TN; V TR, TH, TQ, TK, TL, TM, TI, TG, TJ, TT, TO, TP, TS, T18, T1c; V T12, T1b, T15, T16, T17, T14, T11, T13, T1e, T19, T1a, T1d; { V T1, T3, Ty, T8, T7, TB, Tf, Ts, Tk, Tw, Tq, TD, T2, Tx, T6; V TA, Tc, Te, Td, Tb, Tr, Tj, Ti, Th, Tg, Tv, Tn, Tp, To, Tm; V TC, T4, T9, T5; T1 = LD(&(Rp[0]), ms, &(Rp[0])); T2 = LD(&(Rm[0]), -ms, &(Rm[0])); T3 = VCONJ(T2); Tx = LDW(&(W[0])); Ty = VZMULIJ(Tx, VSUB(T3, T1)); T8 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); T7 = VCONJ(T6); TA = LDW(&(W[TWVL * 6])); TB = VZMULJ(TA, VADD(T7, T8)); Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); Te = VCONJ(Td); Tb = LDW(&(W[TWVL * 2])); Tf = VZMULJ(Tb, VADD(Tc, Te)); Tr = LDW(&(W[TWVL * 4])); Ts = VZMULIJ(Tr, VSUB(Te, Tc)); Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); Th = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); Ti = VCONJ(Th); Tg = LDW(&(W[TWVL * 12])); Tk = VZMULIJ(Tg, VSUB(Ti, Tj)); Tv = LDW(&(W[TWVL * 10])); Tw = VZMULJ(Tv, VADD(Ti, Tj)); Tn = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); To = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); Tp = VCONJ(To); Tm = LDW(&(W[TWVL * 14])); Tq = VZMULJ(Tm, VADD(Tn, Tp)); TC = LDW(&(W[TWVL * 16])); TD = VZMULIJ(TC, VSUB(Tp, Tn)); Tl = VSUB(Tf, Tk); Tt = VSUB(Tq, Ts); Tu = VADD(Tl, Tt); TY = VADD(Ty, Tw); TZ = VADD(TB, TD); T10 = VADD(TY, TZ); Tz = VSUB(Tw, Ty); TE = VSUB(TB, TD); TF = VADD(Tz, TE); TV = VADD(Tf, Tk); TW = VADD(Ts, Tq); TX = VADD(TV, TW); T4 = VADD(T1, T3); T5 = LDW(&(W[TWVL * 8])); T9 = VZMULIJ(T5, VSUB(T7, T8)); Ta = VSUB(T4, T9); TU = VADD(T4, T9); } TL = VSUB(Tl, Tt); TM = VSUB(TE, Tz); TN = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TM)))); TR = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TM)))); TI = VMUL(LDK(KP279508497), VSUB(Tu, TF)); TG = VADD(Tu, TF); TJ = VFNMS(LDK(KP125000000), TG, VMUL(LDK(KP500000000), Ta)); TH = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, TG))); TQ = VSUB(TJ, TI); TK = VADD(TI, TJ); ST(&(Rm[WS(rs, 4)]), TH, -ms, &(Rm[0])); TT = VCONJ(VADD(TQ, TR)); ST(&(Rm[WS(rs, 2)]), TT, -ms, &(Rm[0])); TO = VSUB(TK, TN); ST(&(Rp[WS(rs, 1)]), TO, ms, &(Rp[WS(rs, 1)])); TP = VCONJ(VADD(TK, TN)); ST(&(Rm[0]), TP, -ms, &(Rm[0])); TS = VSUB(TQ, TR); ST(&(Rp[WS(rs, 3)]), TS, ms, &(Rp[WS(rs, 1)])); T16 = VSUB(TZ, TY); T17 = VSUB(TV, TW); T18 = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), T17, VMUL(LDK(KP951056516), T16)))); T1c = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), T17, VMUL(LDK(KP587785252), T16)))); T14 = VMUL(LDK(KP279508497), VSUB(TX, T10)); T11 = VADD(TX, T10); T13 = VFNMS(LDK(KP125000000), T11, VMUL(LDK(KP500000000), TU)); T12 = VMUL(LDK(KP500000000), VADD(TU, T11)); T1b = VADD(T14, T13); T15 = VSUB(T13, T14); ST(&(Rp[0]), T12, ms, &(Rp[0])); T1e = VADD(T1b, T1c); ST(&(Rp[WS(rs, 4)]), T1e, ms, &(Rp[0])); T19 = VCONJ(VSUB(T15, T18)); ST(&(Rm[WS(rs, 1)]), T19, -ms, &(Rm[WS(rs, 1)])); T1a = VADD(T15, T18); ST(&(Rp[WS(rs, 2)]), T1a, ms, &(Rp[0])); T1d = VCONJ(VSUB(T1b, T1c)); ST(&(Rm[WS(rs, 3)]), T1d, -ms, &(Rm[WS(rs, 1)])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), VTW(1, 6), VTW(1, 7), VTW(1, 8), VTW(1, 9), { TW_NEXT, VL, 0 } }; static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, { 55, 32, 6, 0 } }; void XSIMD(codelet_hc2cfdftv_10) (planner *p) { X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT); } #endif