/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #include "dft/ct.h" ct_solver *(*X(mksolver_ct_hook))(size_t, INT, int, ct_mkinferior, ct_force_vrecursion) = 0; typedef struct { plan_dft super; plan *cld; plan *cldw; INT r; } P; static void apply_dit(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; plan_dft *cld; plan_dftw *cldw; cld = (plan_dft *) ego->cld; cld->apply(ego->cld, ri, ii, ro, io); cldw = (plan_dftw *) ego->cldw; cldw->apply(ego->cldw, ro, io); } static void apply_dif(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; plan_dft *cld; plan_dftw *cldw; cldw = (plan_dftw *) ego->cldw; cldw->apply(ego->cldw, ri, ii); cld = (plan_dft *) ego->cld; cld->apply(ego->cld, ri, ii, ro, io); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cld, wakefulness); X(plan_awake)(ego->cldw, wakefulness); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cldw); X(plan_destroy_internal)(ego->cld); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(dft-ct-%s/%D%(%p%)%(%p%))", ego->super.apply == apply_dit ? "dit" : "dif", ego->r, ego->cldw, ego->cld); } static int applicable0(const ct_solver *ego, const problem *p_, planner *plnr) { const problem_dft *p = (const problem_dft *) p_; INT r; return (1 && p->sz->rnk == 1 && p->vecsz->rnk <= 1 /* DIF destroys the input and we don't like it */ && (ego->dec == DECDIT || p->ri == p->ro || !NO_DESTROY_INPUTP(plnr)) && ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 1) && p->sz->dims[0].n > r); } int X(ct_applicable)(const ct_solver *ego, const problem *p_, planner *plnr) { const problem_dft *p; if (!applicable0(ego, p_, plnr)) return 0; p = (const problem_dft *) p_; return (0 || ego->dec == DECDIF+TRANSPOSE || p->vecsz->rnk == 0 || !NO_VRECURSEP(plnr) || (ego->force_vrecursionp && ego->force_vrecursionp(ego, p)) ); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const ct_solver *ego = (const ct_solver *) ego_; const problem_dft *p; P *pln = 0; plan *cld = 0, *cldw = 0; INT n, r, m, v, ivs, ovs; iodim *d; static const plan_adt padt = { X(dft_solve), awake, print, destroy }; if ((NO_NONTHREADEDP(plnr)) || !X(ct_applicable)(ego, p_, plnr)) return (plan *) 0; p = (const problem_dft *) p_; d = p->sz->dims; n = d[0].n; r = X(choose_radix)(ego->r, n); m = n / r; X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs); switch (ego->dec) { case DECDIT: { cldw = ego->mkcldw(ego, r, m * d[0].os, m * d[0].os, m, d[0].os, v, ovs, ovs, 0, m, p->ro, p->io, plnr); if (!cldw) goto nada; cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)( X(mktensor_1d)(m, r * d[0].is, d[0].os), X(mktensor_2d)(r, d[0].is, m * d[0].os, v, ivs, ovs), p->ri, p->ii, p->ro, p->io) ); if (!cld) goto nada; pln = MKPLAN_DFT(P, &padt, apply_dit); break; } case DECDIF: case DECDIF+TRANSPOSE: { INT cors, covs; /* cldw ors, ovs */ if (ego->dec == DECDIF+TRANSPOSE) { cors = ivs; covs = m * d[0].is; /* ensure that we generate well-formed dftw subproblems */ /* FIXME: too conservative */ if (!(1 && r == v && d[0].is == r * cors)) goto nada; /* FIXME: allow in-place only for now, like in fftw-3.[01] */ if (!(1 && p->ri == p->ro && d[0].is == r * d[0].os && cors == d[0].os && covs == ovs )) goto nada; } else { cors = m * d[0].is; covs = ivs; } cldw = ego->mkcldw(ego, r, m * d[0].is, cors, m, d[0].is, v, ivs, covs, 0, m, p->ri, p->ii, plnr); if (!cldw) goto nada; cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)( X(mktensor_1d)(m, d[0].is, r * d[0].os), X(mktensor_2d)(r, cors, d[0].os, v, covs, ovs), p->ri, p->ii, p->ro, p->io) ); if (!cld) goto nada; pln = MKPLAN_DFT(P, &padt, apply_dif); break; } default: A(0); } pln->cld = cld; pln->cldw = cldw; pln->r = r; X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops); /* inherit could_prune_now_p attribute from cldw */ pln->super.super.could_prune_now_p = cldw->could_prune_now_p; return &(pln->super.super); nada: X(plan_destroy_internal)(cldw); X(plan_destroy_internal)(cld); return (plan *) 0; } ct_solver *X(mksolver_ct)(size_t size, INT r, int dec, ct_mkinferior mkcldw, ct_force_vrecursion force_vrecursionp) { static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; ct_solver *slv = (ct_solver *)X(mksolver)(size, &sadt); slv->r = r; slv->dec = dec; slv->mkcldw = mkcldw; slv->force_vrecursionp = force_vrecursionp; return slv; } plan *X(mkplan_dftw)(size_t size, const plan_adt *adt, dftwapply apply) { plan_dftw *ego; ego = (plan_dftw *) X(mkplan)(size, adt); ego->apply = apply; return &(ego->super); }