mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-30 16:33:01 +00:00
294 lines
7.8 KiB
C
294 lines
7.8 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
|
||
|
/* direct DFT solver, if we have a codelet */
|
||
|
|
||
|
#include "dft/dft.h"
|
||
|
|
||
|
typedef struct {
|
||
|
solver super;
|
||
|
const kdft_desc *desc;
|
||
|
kdft k;
|
||
|
int bufferedp;
|
||
|
} S;
|
||
|
|
||
|
typedef struct {
|
||
|
plan_dft super;
|
||
|
|
||
|
stride is, os, bufstride;
|
||
|
INT n, vl, ivs, ovs;
|
||
|
kdft k;
|
||
|
const S *slv;
|
||
|
} P;
|
||
|
|
||
|
static void dobatch(const P *ego, R *ri, R *ii, R *ro, R *io,
|
||
|
R *buf, INT batchsz)
|
||
|
{
|
||
|
X(cpy2d_pair_ci)(ri, ii, buf, buf+1,
|
||
|
ego->n, WS(ego->is, 1), WS(ego->bufstride, 1),
|
||
|
batchsz, ego->ivs, 2);
|
||
|
|
||
|
if (IABS(WS(ego->os, 1)) < IABS(ego->ovs)) {
|
||
|
/* transform directly to output */
|
||
|
ego->k(buf, buf+1, ro, io,
|
||
|
ego->bufstride, ego->os, batchsz, 2, ego->ovs);
|
||
|
} else {
|
||
|
/* transform to buffer and copy back */
|
||
|
ego->k(buf, buf+1, buf, buf+1,
|
||
|
ego->bufstride, ego->bufstride, batchsz, 2, 2);
|
||
|
X(cpy2d_pair_co)(buf, buf+1, ro, io,
|
||
|
ego->n, WS(ego->bufstride, 1), WS(ego->os, 1),
|
||
|
batchsz, 2, ego->ovs);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static INT compute_batchsize(INT n)
|
||
|
{
|
||
|
/* round up to multiple of 4 */
|
||
|
n += 3;
|
||
|
n &= -4;
|
||
|
|
||
|
return (n + 2);
|
||
|
}
|
||
|
|
||
|
static void apply_buf(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
R *buf;
|
||
|
INT vl = ego->vl, n = ego->n, batchsz = compute_batchsize(n);
|
||
|
INT i;
|
||
|
size_t bufsz = n * batchsz * 2 * sizeof(R);
|
||
|
|
||
|
BUF_ALLOC(R *, buf, bufsz);
|
||
|
|
||
|
for (i = 0; i < vl - batchsz; i += batchsz) {
|
||
|
dobatch(ego, ri, ii, ro, io, buf, batchsz);
|
||
|
ri += batchsz * ego->ivs; ii += batchsz * ego->ivs;
|
||
|
ro += batchsz * ego->ovs; io += batchsz * ego->ovs;
|
||
|
}
|
||
|
dobatch(ego, ri, ii, ro, io, buf, vl - i);
|
||
|
|
||
|
BUF_FREE(buf, bufsz);
|
||
|
}
|
||
|
|
||
|
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
ASSERT_ALIGNED_DOUBLE;
|
||
|
ego->k(ri, ii, ro, io, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs);
|
||
|
}
|
||
|
|
||
|
static void apply_extra_iter(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
INT vl = ego->vl;
|
||
|
|
||
|
ASSERT_ALIGNED_DOUBLE;
|
||
|
|
||
|
/* for 4-way SIMD when VL is odd: iterate over an
|
||
|
even vector length VL, and then execute the last
|
||
|
iteration as a 2-vector with vector stride 0. */
|
||
|
ego->k(ri, ii, ro, io, ego->is, ego->os, vl - 1, ego->ivs, ego->ovs);
|
||
|
|
||
|
ego->k(ri + (vl - 1) * ego->ivs, ii + (vl - 1) * ego->ivs,
|
||
|
ro + (vl - 1) * ego->ovs, io + (vl - 1) * ego->ovs,
|
||
|
ego->is, ego->os, 1, 0, 0);
|
||
|
}
|
||
|
|
||
|
static void destroy(plan *ego_)
|
||
|
{
|
||
|
P *ego = (P *) ego_;
|
||
|
X(stride_destroy)(ego->is);
|
||
|
X(stride_destroy)(ego->os);
|
||
|
X(stride_destroy)(ego->bufstride);
|
||
|
}
|
||
|
|
||
|
static void print(const plan *ego_, printer *p)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
const S *s = ego->slv;
|
||
|
const kdft_desc *d = s->desc;
|
||
|
|
||
|
if (ego->slv->bufferedp)
|
||
|
p->print(p, "(dft-directbuf/%D-%D%v \"%s\")",
|
||
|
compute_batchsize(d->sz), d->sz, ego->vl, d->nam);
|
||
|
else
|
||
|
p->print(p, "(dft-direct-%D%v \"%s\")", d->sz, ego->vl, d->nam);
|
||
|
}
|
||
|
|
||
|
static int applicable_buf(const solver *ego_, const problem *p_,
|
||
|
const planner *plnr)
|
||
|
{
|
||
|
const S *ego = (const S *) ego_;
|
||
|
const problem_dft *p = (const problem_dft *) p_;
|
||
|
const kdft_desc *d = ego->desc;
|
||
|
INT vl;
|
||
|
INT ivs, ovs;
|
||
|
INT batchsz;
|
||
|
|
||
|
return (
|
||
|
1
|
||
|
&& p->sz->rnk == 1
|
||
|
&& p->vecsz->rnk == 1
|
||
|
&& p->sz->dims[0].n == d->sz
|
||
|
|
||
|
/* check strides etc */
|
||
|
&& X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
|
||
|
|
||
|
/* UGLY if IS <= IVS */
|
||
|
&& !(NO_UGLYP(plnr) &&
|
||
|
X(iabs)(p->sz->dims[0].is) <= X(iabs)(ivs))
|
||
|
|
||
|
&& (batchsz = compute_batchsize(d->sz), 1)
|
||
|
&& (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io,
|
||
|
2 * batchsz, p->sz->dims[0].os,
|
||
|
batchsz, 2, ovs, plnr))
|
||
|
&& (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io,
|
||
|
2 * batchsz, p->sz->dims[0].os,
|
||
|
vl % batchsz, 2, ovs, plnr))
|
||
|
|
||
|
|
||
|
&& (0
|
||
|
/* can operate out-of-place */
|
||
|
|| p->ri != p->ro
|
||
|
|
||
|
/* can operate in-place as long as strides are the same */
|
||
|
|| X(tensor_inplace_strides2)(p->sz, p->vecsz)
|
||
|
|
||
|
/* can do it if the problem fits in the buffer, no matter
|
||
|
what the strides are */
|
||
|
|| vl <= batchsz
|
||
|
)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
static int applicable(const solver *ego_, const problem *p_,
|
||
|
const planner *plnr, int *extra_iterp)
|
||
|
{
|
||
|
const S *ego = (const S *) ego_;
|
||
|
const problem_dft *p = (const problem_dft *) p_;
|
||
|
const kdft_desc *d = ego->desc;
|
||
|
INT vl;
|
||
|
INT ivs, ovs;
|
||
|
|
||
|
return (
|
||
|
1
|
||
|
&& p->sz->rnk == 1
|
||
|
&& p->vecsz->rnk <= 1
|
||
|
&& p->sz->dims[0].n == d->sz
|
||
|
|
||
|
/* check strides etc */
|
||
|
&& X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
|
||
|
|
||
|
&& ((*extra_iterp = 0,
|
||
|
(d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
|
||
|
p->sz->dims[0].is, p->sz->dims[0].os,
|
||
|
vl, ivs, ovs, plnr)))
|
||
|
||
|
||
|
(*extra_iterp = 1,
|
||
|
((d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
|
||
|
p->sz->dims[0].is, p->sz->dims[0].os,
|
||
|
vl - 1, ivs, ovs, plnr))
|
||
|
&&
|
||
|
(d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
|
||
|
p->sz->dims[0].is, p->sz->dims[0].os,
|
||
|
2, 0, 0, plnr)))))
|
||
|
|
||
|
&& (0
|
||
|
/* can operate out-of-place */
|
||
|
|| p->ri != p->ro
|
||
|
|
||
|
/* can always compute one transform */
|
||
|
|| vl == 1
|
||
|
|
||
|
/* can operate in-place as long as strides are the same */
|
||
|
|| X(tensor_inplace_strides2)(p->sz, p->vecsz)
|
||
|
)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
||
|
{
|
||
|
const S *ego = (const S *) ego_;
|
||
|
P *pln;
|
||
|
const problem_dft *p;
|
||
|
iodim *d;
|
||
|
const kdft_desc *e = ego->desc;
|
||
|
|
||
|
static const plan_adt padt = {
|
||
|
X(dft_solve), X(null_awake), print, destroy
|
||
|
};
|
||
|
|
||
|
UNUSED(plnr);
|
||
|
|
||
|
if (ego->bufferedp) {
|
||
|
if (!applicable_buf(ego_, p_, plnr))
|
||
|
return (plan *)0;
|
||
|
pln = MKPLAN_DFT(P, &padt, apply_buf);
|
||
|
} else {
|
||
|
int extra_iterp = 0;
|
||
|
if (!applicable(ego_, p_, plnr, &extra_iterp))
|
||
|
return (plan *)0;
|
||
|
pln = MKPLAN_DFT(P, &padt, extra_iterp ? apply_extra_iter : apply);
|
||
|
}
|
||
|
|
||
|
p = (const problem_dft *) p_;
|
||
|
d = p->sz->dims;
|
||
|
pln->k = ego->k;
|
||
|
pln->n = d[0].n;
|
||
|
pln->is = X(mkstride)(pln->n, d[0].is);
|
||
|
pln->os = X(mkstride)(pln->n, d[0].os);
|
||
|
pln->bufstride = X(mkstride)(pln->n, 2 * compute_batchsize(pln->n));
|
||
|
|
||
|
X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
|
||
|
pln->slv = ego;
|
||
|
|
||
|
X(ops_zero)(&pln->super.super.ops);
|
||
|
X(ops_madd2)(pln->vl / e->genus->vl, &e->ops, &pln->super.super.ops);
|
||
|
|
||
|
if (ego->bufferedp)
|
||
|
pln->super.super.ops.other += 4 * pln->n * pln->vl;
|
||
|
|
||
|
pln->super.super.could_prune_now_p = !ego->bufferedp;
|
||
|
return &(pln->super.super);
|
||
|
}
|
||
|
|
||
|
static solver *mksolver(kdft k, const kdft_desc *desc, int bufferedp)
|
||
|
{
|
||
|
static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
|
||
|
S *slv = MKSOLVER(S, &sadt);
|
||
|
slv->k = k;
|
||
|
slv->desc = desc;
|
||
|
slv->bufferedp = bufferedp;
|
||
|
return &(slv->super);
|
||
|
}
|
||
|
|
||
|
solver *X(mksolver_dft_direct)(kdft k, const kdft_desc *desc)
|
||
|
{
|
||
|
return mksolver(k, desc, 0);
|
||
|
}
|
||
|
|
||
|
solver *X(mksolver_dft_directbuf)(kdft k, const kdft_desc *desc)
|
||
|
{
|
||
|
return mksolver(k, desc, 1);
|
||
|
}
|