mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-30 08:23:01 +00:00
561 lines
14 KiB
C
561 lines
14 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:25 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name n1_16 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 144 FP additions, 40 FP multiplications,
|
||
|
* (or, 104 additions, 0 multiplications, 40 fused multiply/add),
|
||
|
* 50 stack variables, 3 constants, and 64 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
||
|
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
||
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) {
|
||
|
E T7, T1R, T25, TC, TN, T1x, T1H, T1l, Tt, T22, T2h, T1b, T1g, T1E, T1Z;
|
||
|
E T1D, Te, T1S, T26, TJ, TQ, T1m, T1n, TT, Tm, T1X, T2g, T10, T15, T1B;
|
||
|
E T1U, T1A;
|
||
|
{
|
||
|
E T3, TL, Ty, T1k, T6, T1j, TB, TM;
|
||
|
{
|
||
|
E T1, T2, Tw, Tx;
|
||
|
T1 = ri[0];
|
||
|
T2 = ri[WS(is, 8)];
|
||
|
T3 = T1 + T2;
|
||
|
TL = T1 - T2;
|
||
|
Tw = ii[0];
|
||
|
Tx = ii[WS(is, 8)];
|
||
|
Ty = Tw + Tx;
|
||
|
T1k = Tw - Tx;
|
||
|
}
|
||
|
{
|
||
|
E T4, T5, Tz, TA;
|
||
|
T4 = ri[WS(is, 4)];
|
||
|
T5 = ri[WS(is, 12)];
|
||
|
T6 = T4 + T5;
|
||
|
T1j = T4 - T5;
|
||
|
Tz = ii[WS(is, 4)];
|
||
|
TA = ii[WS(is, 12)];
|
||
|
TB = Tz + TA;
|
||
|
TM = Tz - TA;
|
||
|
}
|
||
|
T7 = T3 + T6;
|
||
|
T1R = T3 - T6;
|
||
|
T25 = Ty - TB;
|
||
|
TC = Ty + TB;
|
||
|
TN = TL - TM;
|
||
|
T1x = TL + TM;
|
||
|
T1H = T1k - T1j;
|
||
|
T1l = T1j + T1k;
|
||
|
}
|
||
|
{
|
||
|
E Tp, T1c, T1a, T20, Ts, T17, T1f, T21;
|
||
|
{
|
||
|
E Tn, To, T18, T19;
|
||
|
Tn = ri[WS(is, 15)];
|
||
|
To = ri[WS(is, 7)];
|
||
|
Tp = Tn + To;
|
||
|
T1c = Tn - To;
|
||
|
T18 = ii[WS(is, 15)];
|
||
|
T19 = ii[WS(is, 7)];
|
||
|
T1a = T18 - T19;
|
||
|
T20 = T18 + T19;
|
||
|
}
|
||
|
{
|
||
|
E Tq, Tr, T1d, T1e;
|
||
|
Tq = ri[WS(is, 3)];
|
||
|
Tr = ri[WS(is, 11)];
|
||
|
Ts = Tq + Tr;
|
||
|
T17 = Tq - Tr;
|
||
|
T1d = ii[WS(is, 3)];
|
||
|
T1e = ii[WS(is, 11)];
|
||
|
T1f = T1d - T1e;
|
||
|
T21 = T1d + T1e;
|
||
|
}
|
||
|
Tt = Tp + Ts;
|
||
|
T22 = T20 - T21;
|
||
|
T2h = T20 + T21;
|
||
|
T1b = T17 + T1a;
|
||
|
T1g = T1c - T1f;
|
||
|
T1E = T1a - T17;
|
||
|
T1Z = Tp - Ts;
|
||
|
T1D = T1c + T1f;
|
||
|
}
|
||
|
{
|
||
|
E Ta, TP, TF, TO, Td, TR, TI, TS;
|
||
|
{
|
||
|
E T8, T9, TD, TE;
|
||
|
T8 = ri[WS(is, 2)];
|
||
|
T9 = ri[WS(is, 10)];
|
||
|
Ta = T8 + T9;
|
||
|
TP = T8 - T9;
|
||
|
TD = ii[WS(is, 2)];
|
||
|
TE = ii[WS(is, 10)];
|
||
|
TF = TD + TE;
|
||
|
TO = TD - TE;
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tc, TG, TH;
|
||
|
Tb = ri[WS(is, 14)];
|
||
|
Tc = ri[WS(is, 6)];
|
||
|
Td = Tb + Tc;
|
||
|
TR = Tb - Tc;
|
||
|
TG = ii[WS(is, 14)];
|
||
|
TH = ii[WS(is, 6)];
|
||
|
TI = TG + TH;
|
||
|
TS = TG - TH;
|
||
|
}
|
||
|
Te = Ta + Td;
|
||
|
T1S = TF - TI;
|
||
|
T26 = Td - Ta;
|
||
|
TJ = TF + TI;
|
||
|
TQ = TO - TP;
|
||
|
T1m = TR - TS;
|
||
|
T1n = TP + TO;
|
||
|
TT = TR + TS;
|
||
|
}
|
||
|
{
|
||
|
E Ti, T11, TZ, T1V, Tl, TW, T14, T1W;
|
||
|
{
|
||
|
E Tg, Th, TX, TY;
|
||
|
Tg = ri[WS(is, 1)];
|
||
|
Th = ri[WS(is, 9)];
|
||
|
Ti = Tg + Th;
|
||
|
T11 = Tg - Th;
|
||
|
TX = ii[WS(is, 1)];
|
||
|
TY = ii[WS(is, 9)];
|
||
|
TZ = TX - TY;
|
||
|
T1V = TX + TY;
|
||
|
}
|
||
|
{
|
||
|
E Tj, Tk, T12, T13;
|
||
|
Tj = ri[WS(is, 5)];
|
||
|
Tk = ri[WS(is, 13)];
|
||
|
Tl = Tj + Tk;
|
||
|
TW = Tj - Tk;
|
||
|
T12 = ii[WS(is, 5)];
|
||
|
T13 = ii[WS(is, 13)];
|
||
|
T14 = T12 - T13;
|
||
|
T1W = T12 + T13;
|
||
|
}
|
||
|
Tm = Ti + Tl;
|
||
|
T1X = T1V - T1W;
|
||
|
T2g = T1V + T1W;
|
||
|
T10 = TW + TZ;
|
||
|
T15 = T11 - T14;
|
||
|
T1B = TZ - TW;
|
||
|
T1U = Ti - Tl;
|
||
|
T1A = T11 + T14;
|
||
|
}
|
||
|
{
|
||
|
E Tf, Tu, T2j, T2k;
|
||
|
Tf = T7 + Te;
|
||
|
Tu = Tm + Tt;
|
||
|
ro[WS(os, 8)] = Tf - Tu;
|
||
|
ro[0] = Tf + Tu;
|
||
|
T2j = TC + TJ;
|
||
|
T2k = T2g + T2h;
|
||
|
io[WS(os, 8)] = T2j - T2k;
|
||
|
io[0] = T2j + T2k;
|
||
|
}
|
||
|
{
|
||
|
E Tv, TK, T2f, T2i;
|
||
|
Tv = Tt - Tm;
|
||
|
TK = TC - TJ;
|
||
|
io[WS(os, 4)] = Tv + TK;
|
||
|
io[WS(os, 12)] = TK - Tv;
|
||
|
T2f = T7 - Te;
|
||
|
T2i = T2g - T2h;
|
||
|
ro[WS(os, 12)] = T2f - T2i;
|
||
|
ro[WS(os, 4)] = T2f + T2i;
|
||
|
}
|
||
|
{
|
||
|
E T1T, T27, T24, T28, T1Y, T23;
|
||
|
T1T = T1R + T1S;
|
||
|
T27 = T25 - T26;
|
||
|
T1Y = T1U + T1X;
|
||
|
T23 = T1Z - T22;
|
||
|
T24 = T1Y + T23;
|
||
|
T28 = T23 - T1Y;
|
||
|
ro[WS(os, 10)] = FNMS(KP707106781, T24, T1T);
|
||
|
io[WS(os, 6)] = FMA(KP707106781, T28, T27);
|
||
|
ro[WS(os, 2)] = FMA(KP707106781, T24, T1T);
|
||
|
io[WS(os, 14)] = FNMS(KP707106781, T28, T27);
|
||
|
}
|
||
|
{
|
||
|
E T29, T2d, T2c, T2e, T2a, T2b;
|
||
|
T29 = T1R - T1S;
|
||
|
T2d = T26 + T25;
|
||
|
T2a = T1X - T1U;
|
||
|
T2b = T1Z + T22;
|
||
|
T2c = T2a - T2b;
|
||
|
T2e = T2a + T2b;
|
||
|
ro[WS(os, 14)] = FNMS(KP707106781, T2c, T29);
|
||
|
io[WS(os, 2)] = FMA(KP707106781, T2e, T2d);
|
||
|
ro[WS(os, 6)] = FMA(KP707106781, T2c, T29);
|
||
|
io[WS(os, 10)] = FNMS(KP707106781, T2e, T2d);
|
||
|
}
|
||
|
{
|
||
|
E TV, T1v, T1p, T1r, T1i, T1q, T1u, T1w, TU, T1o;
|
||
|
TU = TQ - TT;
|
||
|
TV = FMA(KP707106781, TU, TN);
|
||
|
T1v = FNMS(KP707106781, TU, TN);
|
||
|
T1o = T1m - T1n;
|
||
|
T1p = FNMS(KP707106781, T1o, T1l);
|
||
|
T1r = FMA(KP707106781, T1o, T1l);
|
||
|
{
|
||
|
E T16, T1h, T1s, T1t;
|
||
|
T16 = FMA(KP414213562, T15, T10);
|
||
|
T1h = FNMS(KP414213562, T1g, T1b);
|
||
|
T1i = T16 - T1h;
|
||
|
T1q = T16 + T1h;
|
||
|
T1s = FMA(KP414213562, T1b, T1g);
|
||
|
T1t = FNMS(KP414213562, T10, T15);
|
||
|
T1u = T1s - T1t;
|
||
|
T1w = T1t + T1s;
|
||
|
}
|
||
|
ro[WS(os, 11)] = FNMS(KP923879532, T1i, TV);
|
||
|
io[WS(os, 11)] = FNMS(KP923879532, T1u, T1r);
|
||
|
ro[WS(os, 3)] = FMA(KP923879532, T1i, TV);
|
||
|
io[WS(os, 3)] = FMA(KP923879532, T1u, T1r);
|
||
|
io[WS(os, 7)] = FNMS(KP923879532, T1q, T1p);
|
||
|
ro[WS(os, 7)] = FNMS(KP923879532, T1w, T1v);
|
||
|
io[WS(os, 15)] = FMA(KP923879532, T1q, T1p);
|
||
|
ro[WS(os, 15)] = FMA(KP923879532, T1w, T1v);
|
||
|
}
|
||
|
{
|
||
|
E T1z, T1L, T1J, T1P, T1G, T1K, T1O, T1Q, T1y, T1I;
|
||
|
T1y = T1n + T1m;
|
||
|
T1z = FMA(KP707106781, T1y, T1x);
|
||
|
T1L = FNMS(KP707106781, T1y, T1x);
|
||
|
T1I = TQ + TT;
|
||
|
T1J = FNMS(KP707106781, T1I, T1H);
|
||
|
T1P = FMA(KP707106781, T1I, T1H);
|
||
|
{
|
||
|
E T1C, T1F, T1M, T1N;
|
||
|
T1C = FMA(KP414213562, T1B, T1A);
|
||
|
T1F = FNMS(KP414213562, T1E, T1D);
|
||
|
T1G = T1C + T1F;
|
||
|
T1K = T1F - T1C;
|
||
|
T1M = FNMS(KP414213562, T1A, T1B);
|
||
|
T1N = FMA(KP414213562, T1D, T1E);
|
||
|
T1O = T1M - T1N;
|
||
|
T1Q = T1M + T1N;
|
||
|
}
|
||
|
ro[WS(os, 9)] = FNMS(KP923879532, T1G, T1z);
|
||
|
io[WS(os, 9)] = FNMS(KP923879532, T1Q, T1P);
|
||
|
ro[WS(os, 1)] = FMA(KP923879532, T1G, T1z);
|
||
|
io[WS(os, 1)] = FMA(KP923879532, T1Q, T1P);
|
||
|
io[WS(os, 13)] = FNMS(KP923879532, T1K, T1J);
|
||
|
ro[WS(os, 13)] = FNMS(KP923879532, T1O, T1L);
|
||
|
io[WS(os, 5)] = FMA(KP923879532, T1K, T1J);
|
||
|
ro[WS(os, 5)] = FMA(KP923879532, T1O, T1L);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 16, "n1_16", { 104, 0, 40, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_16) (planner *p) { X(kdft_register) (p, n1_16, &desc);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 16 -name n1_16 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 144 FP additions, 24 FP multiplications,
|
||
|
* (or, 136 additions, 16 multiplications, 8 fused multiply/add),
|
||
|
* 50 stack variables, 3 constants, and 64 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
|
||
|
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
||
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) {
|
||
|
E T7, T1R, T25, TC, TN, T1x, T1H, T1l, Tt, T22, T2h, T1b, T1g, T1E, T1Z;
|
||
|
E T1D, Te, T1S, T26, TJ, TQ, T1m, T1n, TT, Tm, T1X, T2g, T10, T15, T1B;
|
||
|
E T1U, T1A;
|
||
|
{
|
||
|
E T3, TL, Ty, T1k, T6, T1j, TB, TM;
|
||
|
{
|
||
|
E T1, T2, Tw, Tx;
|
||
|
T1 = ri[0];
|
||
|
T2 = ri[WS(is, 8)];
|
||
|
T3 = T1 + T2;
|
||
|
TL = T1 - T2;
|
||
|
Tw = ii[0];
|
||
|
Tx = ii[WS(is, 8)];
|
||
|
Ty = Tw + Tx;
|
||
|
T1k = Tw - Tx;
|
||
|
}
|
||
|
{
|
||
|
E T4, T5, Tz, TA;
|
||
|
T4 = ri[WS(is, 4)];
|
||
|
T5 = ri[WS(is, 12)];
|
||
|
T6 = T4 + T5;
|
||
|
T1j = T4 - T5;
|
||
|
Tz = ii[WS(is, 4)];
|
||
|
TA = ii[WS(is, 12)];
|
||
|
TB = Tz + TA;
|
||
|
TM = Tz - TA;
|
||
|
}
|
||
|
T7 = T3 + T6;
|
||
|
T1R = T3 - T6;
|
||
|
T25 = Ty - TB;
|
||
|
TC = Ty + TB;
|
||
|
TN = TL - TM;
|
||
|
T1x = TL + TM;
|
||
|
T1H = T1k - T1j;
|
||
|
T1l = T1j + T1k;
|
||
|
}
|
||
|
{
|
||
|
E Tp, T17, T1f, T20, Ts, T1c, T1a, T21;
|
||
|
{
|
||
|
E Tn, To, T1d, T1e;
|
||
|
Tn = ri[WS(is, 15)];
|
||
|
To = ri[WS(is, 7)];
|
||
|
Tp = Tn + To;
|
||
|
T17 = Tn - To;
|
||
|
T1d = ii[WS(is, 15)];
|
||
|
T1e = ii[WS(is, 7)];
|
||
|
T1f = T1d - T1e;
|
||
|
T20 = T1d + T1e;
|
||
|
}
|
||
|
{
|
||
|
E Tq, Tr, T18, T19;
|
||
|
Tq = ri[WS(is, 3)];
|
||
|
Tr = ri[WS(is, 11)];
|
||
|
Ts = Tq + Tr;
|
||
|
T1c = Tq - Tr;
|
||
|
T18 = ii[WS(is, 3)];
|
||
|
T19 = ii[WS(is, 11)];
|
||
|
T1a = T18 - T19;
|
||
|
T21 = T18 + T19;
|
||
|
}
|
||
|
Tt = Tp + Ts;
|
||
|
T22 = T20 - T21;
|
||
|
T2h = T20 + T21;
|
||
|
T1b = T17 - T1a;
|
||
|
T1g = T1c + T1f;
|
||
|
T1E = T1f - T1c;
|
||
|
T1Z = Tp - Ts;
|
||
|
T1D = T17 + T1a;
|
||
|
}
|
||
|
{
|
||
|
E Ta, TP, TF, TO, Td, TR, TI, TS;
|
||
|
{
|
||
|
E T8, T9, TD, TE;
|
||
|
T8 = ri[WS(is, 2)];
|
||
|
T9 = ri[WS(is, 10)];
|
||
|
Ta = T8 + T9;
|
||
|
TP = T8 - T9;
|
||
|
TD = ii[WS(is, 2)];
|
||
|
TE = ii[WS(is, 10)];
|
||
|
TF = TD + TE;
|
||
|
TO = TD - TE;
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tc, TG, TH;
|
||
|
Tb = ri[WS(is, 14)];
|
||
|
Tc = ri[WS(is, 6)];
|
||
|
Td = Tb + Tc;
|
||
|
TR = Tb - Tc;
|
||
|
TG = ii[WS(is, 14)];
|
||
|
TH = ii[WS(is, 6)];
|
||
|
TI = TG + TH;
|
||
|
TS = TG - TH;
|
||
|
}
|
||
|
Te = Ta + Td;
|
||
|
T1S = TF - TI;
|
||
|
T26 = Td - Ta;
|
||
|
TJ = TF + TI;
|
||
|
TQ = TO - TP;
|
||
|
T1m = TR - TS;
|
||
|
T1n = TP + TO;
|
||
|
TT = TR + TS;
|
||
|
}
|
||
|
{
|
||
|
E Ti, T11, TZ, T1V, Tl, TW, T14, T1W;
|
||
|
{
|
||
|
E Tg, Th, TX, TY;
|
||
|
Tg = ri[WS(is, 1)];
|
||
|
Th = ri[WS(is, 9)];
|
||
|
Ti = Tg + Th;
|
||
|
T11 = Tg - Th;
|
||
|
TX = ii[WS(is, 1)];
|
||
|
TY = ii[WS(is, 9)];
|
||
|
TZ = TX - TY;
|
||
|
T1V = TX + TY;
|
||
|
}
|
||
|
{
|
||
|
E Tj, Tk, T12, T13;
|
||
|
Tj = ri[WS(is, 5)];
|
||
|
Tk = ri[WS(is, 13)];
|
||
|
Tl = Tj + Tk;
|
||
|
TW = Tj - Tk;
|
||
|
T12 = ii[WS(is, 5)];
|
||
|
T13 = ii[WS(is, 13)];
|
||
|
T14 = T12 - T13;
|
||
|
T1W = T12 + T13;
|
||
|
}
|
||
|
Tm = Ti + Tl;
|
||
|
T1X = T1V - T1W;
|
||
|
T2g = T1V + T1W;
|
||
|
T10 = TW + TZ;
|
||
|
T15 = T11 - T14;
|
||
|
T1B = T11 + T14;
|
||
|
T1U = Ti - Tl;
|
||
|
T1A = TZ - TW;
|
||
|
}
|
||
|
{
|
||
|
E Tf, Tu, T2j, T2k;
|
||
|
Tf = T7 + Te;
|
||
|
Tu = Tm + Tt;
|
||
|
ro[WS(os, 8)] = Tf - Tu;
|
||
|
ro[0] = Tf + Tu;
|
||
|
T2j = TC + TJ;
|
||
|
T2k = T2g + T2h;
|
||
|
io[WS(os, 8)] = T2j - T2k;
|
||
|
io[0] = T2j + T2k;
|
||
|
}
|
||
|
{
|
||
|
E Tv, TK, T2f, T2i;
|
||
|
Tv = Tt - Tm;
|
||
|
TK = TC - TJ;
|
||
|
io[WS(os, 4)] = Tv + TK;
|
||
|
io[WS(os, 12)] = TK - Tv;
|
||
|
T2f = T7 - Te;
|
||
|
T2i = T2g - T2h;
|
||
|
ro[WS(os, 12)] = T2f - T2i;
|
||
|
ro[WS(os, 4)] = T2f + T2i;
|
||
|
}
|
||
|
{
|
||
|
E T1T, T27, T24, T28, T1Y, T23;
|
||
|
T1T = T1R + T1S;
|
||
|
T27 = T25 - T26;
|
||
|
T1Y = T1U + T1X;
|
||
|
T23 = T1Z - T22;
|
||
|
T24 = KP707106781 * (T1Y + T23);
|
||
|
T28 = KP707106781 * (T23 - T1Y);
|
||
|
ro[WS(os, 10)] = T1T - T24;
|
||
|
io[WS(os, 6)] = T27 + T28;
|
||
|
ro[WS(os, 2)] = T1T + T24;
|
||
|
io[WS(os, 14)] = T27 - T28;
|
||
|
}
|
||
|
{
|
||
|
E T29, T2d, T2c, T2e, T2a, T2b;
|
||
|
T29 = T1R - T1S;
|
||
|
T2d = T26 + T25;
|
||
|
T2a = T1X - T1U;
|
||
|
T2b = T1Z + T22;
|
||
|
T2c = KP707106781 * (T2a - T2b);
|
||
|
T2e = KP707106781 * (T2a + T2b);
|
||
|
ro[WS(os, 14)] = T29 - T2c;
|
||
|
io[WS(os, 2)] = T2d + T2e;
|
||
|
ro[WS(os, 6)] = T29 + T2c;
|
||
|
io[WS(os, 10)] = T2d - T2e;
|
||
|
}
|
||
|
{
|
||
|
E TV, T1r, T1p, T1v, T1i, T1q, T1u, T1w, TU, T1o;
|
||
|
TU = KP707106781 * (TQ - TT);
|
||
|
TV = TN + TU;
|
||
|
T1r = TN - TU;
|
||
|
T1o = KP707106781 * (T1m - T1n);
|
||
|
T1p = T1l - T1o;
|
||
|
T1v = T1l + T1o;
|
||
|
{
|
||
|
E T16, T1h, T1s, T1t;
|
||
|
T16 = FMA(KP923879532, T10, KP382683432 * T15);
|
||
|
T1h = FNMS(KP923879532, T1g, KP382683432 * T1b);
|
||
|
T1i = T16 + T1h;
|
||
|
T1q = T1h - T16;
|
||
|
T1s = FNMS(KP923879532, T15, KP382683432 * T10);
|
||
|
T1t = FMA(KP382683432, T1g, KP923879532 * T1b);
|
||
|
T1u = T1s - T1t;
|
||
|
T1w = T1s + T1t;
|
||
|
}
|
||
|
ro[WS(os, 11)] = TV - T1i;
|
||
|
io[WS(os, 11)] = T1v - T1w;
|
||
|
ro[WS(os, 3)] = TV + T1i;
|
||
|
io[WS(os, 3)] = T1v + T1w;
|
||
|
io[WS(os, 15)] = T1p - T1q;
|
||
|
ro[WS(os, 15)] = T1r - T1u;
|
||
|
io[WS(os, 7)] = T1p + T1q;
|
||
|
ro[WS(os, 7)] = T1r + T1u;
|
||
|
}
|
||
|
{
|
||
|
E T1z, T1L, T1J, T1P, T1G, T1K, T1O, T1Q, T1y, T1I;
|
||
|
T1y = KP707106781 * (T1n + T1m);
|
||
|
T1z = T1x + T1y;
|
||
|
T1L = T1x - T1y;
|
||
|
T1I = KP707106781 * (TQ + TT);
|
||
|
T1J = T1H - T1I;
|
||
|
T1P = T1H + T1I;
|
||
|
{
|
||
|
E T1C, T1F, T1M, T1N;
|
||
|
T1C = FMA(KP382683432, T1A, KP923879532 * T1B);
|
||
|
T1F = FNMS(KP382683432, T1E, KP923879532 * T1D);
|
||
|
T1G = T1C + T1F;
|
||
|
T1K = T1F - T1C;
|
||
|
T1M = FNMS(KP382683432, T1B, KP923879532 * T1A);
|
||
|
T1N = FMA(KP923879532, T1E, KP382683432 * T1D);
|
||
|
T1O = T1M - T1N;
|
||
|
T1Q = T1M + T1N;
|
||
|
}
|
||
|
ro[WS(os, 9)] = T1z - T1G;
|
||
|
io[WS(os, 9)] = T1P - T1Q;
|
||
|
ro[WS(os, 1)] = T1z + T1G;
|
||
|
io[WS(os, 1)] = T1P + T1Q;
|
||
|
io[WS(os, 13)] = T1J - T1K;
|
||
|
ro[WS(os, 13)] = T1L - T1O;
|
||
|
io[WS(os, 5)] = T1J + T1K;
|
||
|
ro[WS(os, 5)] = T1L + T1O;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 16, "n1_16", { 136, 16, 8, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_16) (planner *p) { X(kdft_register) (p, n1_16, &desc);
|
||
|
}
|
||
|
|
||
|
#endif
|