mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-23 21:15:11 +00:00
336 lines
9.3 KiB
C
336 lines
9.3 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* Double-precision support added by Romain Dolbeau.
|
||
|
* Romain Dolbeau hereby places his modifications in the public domain.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#if !defined(FFTW_SINGLE) && !defined( __aarch64__)
|
||
|
#error "NEON only works in single precision on 32 bits ARM"
|
||
|
#endif
|
||
|
#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
|
||
|
#error "NEON only works in single or double precision"
|
||
|
#endif
|
||
|
|
||
|
#ifdef FFTW_SINGLE
|
||
|
# define DS(d,s) s /* single-precision option */
|
||
|
# define SUFF(name) name ## _f32
|
||
|
#else
|
||
|
# define DS(d,s) d /* double-precision option */
|
||
|
# define SUFF(name) name ## _f64
|
||
|
#endif
|
||
|
|
||
|
/* define these unconditionally, because they are used by
|
||
|
taint.c which is compiled without neon */
|
||
|
#define SIMD_SUFFIX _neon /* for renaming */
|
||
|
#define VL DS(1,2) /* SIMD complex vector length */
|
||
|
#define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2))
|
||
|
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
|
||
|
|
||
|
#if defined(__GNUC__) && !defined(__ARM_NEON__) && !defined(__ARM_NEON)
|
||
|
#error "compiling simd-neon.h requires -mfpu=neon or equivalent"
|
||
|
#endif
|
||
|
|
||
|
#include <arm_neon.h>
|
||
|
|
||
|
/* FIXME: I am not sure whether this code assumes little-endian
|
||
|
ordering. VLIT may or may not be wrong for big-endian systems. */
|
||
|
typedef DS(float64x2_t, float32x4_t) V;
|
||
|
|
||
|
#ifdef FFTW_SINGLE
|
||
|
# define VLIT(x0, x1) {x0, x1, x0, x1}
|
||
|
#else
|
||
|
# define VLIT(x0, x1) {x0, x1}
|
||
|
#endif
|
||
|
#define LDK(x) x
|
||
|
#define DVK(var, val) const V var = VLIT(val, val)
|
||
|
|
||
|
/* NEON has FMA, but a three-operand FMA is not too useful
|
||
|
for FFT purposes. We normally compute
|
||
|
|
||
|
t0=a+b*c
|
||
|
t1=a-b*c
|
||
|
|
||
|
In a three-operand instruction set this translates into
|
||
|
|
||
|
t0=a
|
||
|
t0+=b*c
|
||
|
t1=a
|
||
|
t1-=b*c
|
||
|
|
||
|
At least one move must be implemented, negating the advantage of
|
||
|
the FMA in the first place. At least some versions of gcc generate
|
||
|
both moves. So we are better off generating t=b*c;t0=a+t;t1=a-t;*/
|
||
|
#if ARCH_PREFERS_FMA
|
||
|
#warning "--enable-fma on NEON is probably a bad idea (see source code)"
|
||
|
#endif
|
||
|
|
||
|
#define VADD(a, b) SUFF(vaddq)(a, b)
|
||
|
#define VSUB(a, b) SUFF(vsubq)(a, b)
|
||
|
#define VMUL(a, b) SUFF(vmulq)(a, b)
|
||
|
#define VFMA(a, b, c) SUFF(vmlaq)(c, a, b) /* a*b+c */
|
||
|
#define VFNMS(a, b, c) SUFF(vmlsq)(c, a, b) /* FNMS=-(a*b-c) in powerpc terminology; MLS=c-a*b
|
||
|
in ARM terminology */
|
||
|
#define VFMS(a, b, c) VSUB(VMUL(a, b), c) /* FMS=a*b-c in powerpc terminology; no equivalent
|
||
|
arm instruction (?) */
|
||
|
|
||
|
#define STOREH(a, v) SUFF(vst1)((a), SUFF(vget_high)(v))
|
||
|
#define STOREL(a, v) SUFF(vst1)((a), SUFF(vget_low)(v))
|
||
|
|
||
|
static inline V LDA(const R *x, INT ivs, const R *aligned_like)
|
||
|
{
|
||
|
(void) aligned_like; /* UNUSED */
|
||
|
return SUFF(vld1q)(x);
|
||
|
}
|
||
|
static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
|
||
|
{
|
||
|
(void) aligned_like; /* UNUSED */
|
||
|
SUFF(vst1q)(x, v);
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef FFTW_SINGLE
|
||
|
static inline V LD(const R *x, INT ivs, const R *aligned_like)
|
||
|
{
|
||
|
(void) aligned_like; /* UNUSED */
|
||
|
return SUFF(vcombine)(SUFF(vld1)(x), SUFF(vld1)((x + ivs)));
|
||
|
}
|
||
|
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
|
||
|
{
|
||
|
(void) aligned_like; /* UNUSED */
|
||
|
/* WARNING: the extra_iter hack depends upon store-low occurring
|
||
|
after store-high */
|
||
|
STOREH(x + ovs, v);
|
||
|
STOREL(x,v);
|
||
|
}
|
||
|
#else /* !FFTW_SINGLE */
|
||
|
# define LD LDA
|
||
|
# define ST STA
|
||
|
#endif
|
||
|
|
||
|
/* 2x2 complex transpose and store */
|
||
|
#define STM2 DS(STA,ST)
|
||
|
#define STN2(x, v0, v1, ovs) /* nop */
|
||
|
|
||
|
#ifdef FFTW_SINGLE
|
||
|
/* store and 4x4 real transpose */
|
||
|
static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
|
||
|
{
|
||
|
(void) aligned_like; /* UNUSED */
|
||
|
SUFF(vst1_lane)((x) , SUFF(vget_low)(v), 0);
|
||
|
SUFF(vst1_lane)((x + ovs), SUFF(vget_low)(v), 1);
|
||
|
SUFF(vst1_lane)((x + 2 * ovs), SUFF(vget_high)(v), 0);
|
||
|
SUFF(vst1_lane)((x + 3 * ovs), SUFF(vget_high)(v), 1);
|
||
|
}
|
||
|
#define STN4(x, v0, v1, v2, v3, ovs) /* use STM4 */
|
||
|
#else /* !FFTW_SINGLE */
|
||
|
static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
|
||
|
{
|
||
|
(void)aligned_like; /* UNUSED */
|
||
|
STOREL(x, v);
|
||
|
STOREH(x + ovs, v);
|
||
|
}
|
||
|
# define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
|
||
|
#endif
|
||
|
|
||
|
#ifdef FFTW_SINGLE
|
||
|
#define FLIP_RI(x) SUFF(vrev64q)(x)
|
||
|
#else
|
||
|
/* FIXME */
|
||
|
#define FLIP_RI(x) SUFF(vcombine)(SUFF(vget_high)(x), SUFF(vget_low)(x))
|
||
|
#endif
|
||
|
|
||
|
static inline V VCONJ(V x)
|
||
|
{
|
||
|
#ifdef FFTW_SINGLE
|
||
|
static const uint32x4_t pm = {0, 0x80000000u, 0, 0x80000000u};
|
||
|
return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(x), pm));
|
||
|
#else
|
||
|
static const uint64x2_t pm = {0, 0x8000000000000000ull};
|
||
|
/* Gcc-4.9.2 still does not include vreinterpretq_f64_u64, but simple
|
||
|
* casts generate the correct assembly.
|
||
|
*/
|
||
|
return (float64x2_t)(veorq_u64((uint64x2_t)(x), (uint64x2_t)(pm)));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static inline V VBYI(V x)
|
||
|
{
|
||
|
return FLIP_RI(VCONJ(x));
|
||
|
}
|
||
|
|
||
|
static inline V VFMAI(V b, V c)
|
||
|
{
|
||
|
const V mp = VLIT(-1.0, 1.0);
|
||
|
return VFMA(FLIP_RI(b), mp, c);
|
||
|
}
|
||
|
|
||
|
static inline V VFNMSI(V b, V c)
|
||
|
{
|
||
|
const V mp = VLIT(-1.0, 1.0);
|
||
|
return VFNMS(FLIP_RI(b), mp, c);
|
||
|
}
|
||
|
|
||
|
static inline V VFMACONJ(V b, V c)
|
||
|
{
|
||
|
const V pm = VLIT(1.0, -1.0);
|
||
|
return VFMA(b, pm, c);
|
||
|
}
|
||
|
|
||
|
static inline V VFNMSCONJ(V b, V c)
|
||
|
{
|
||
|
const V pm = VLIT(1.0, -1.0);
|
||
|
return VFNMS(b, pm, c);
|
||
|
}
|
||
|
|
||
|
static inline V VFMSCONJ(V b, V c)
|
||
|
{
|
||
|
return VSUB(VCONJ(b), c);
|
||
|
}
|
||
|
|
||
|
#ifdef FFTW_SINGLE
|
||
|
#if 1
|
||
|
#define VEXTRACT_REIM(tr, ti, tx) \
|
||
|
{ \
|
||
|
tr = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 0), \
|
||
|
SUFF(vdup_lane)(SUFF(vget_high)(tx), 0)); \
|
||
|
ti = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 1), \
|
||
|
SUFF(vdup_lane)(SUFF(vget_high)(tx), 1)); \
|
||
|
}
|
||
|
#else
|
||
|
/* this alternative might be faster in an ideal world, but gcc likes
|
||
|
to spill VVV onto the stack */
|
||
|
#define VEXTRACT_REIM(tr, ti, tx) \
|
||
|
{ \
|
||
|
float32x4x2_t vvv = SUFF(vtrnq)(tx, tx); \
|
||
|
tr = vvv.val[0]; \
|
||
|
ti = vvv.val[1]; \
|
||
|
}
|
||
|
#endif
|
||
|
#else
|
||
|
#define VEXTRACT_REIM(tr, ti, tx) \
|
||
|
{ \
|
||
|
tr = SUFF(vtrn1q)(tx, tx); \
|
||
|
ti = SUFF(vtrn2q)(tx, tx); \
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static inline V VZMUL(V tx, V sr)
|
||
|
{
|
||
|
V tr, ti;
|
||
|
VEXTRACT_REIM(tr, ti, tx);
|
||
|
tr = VMUL(sr, tr);
|
||
|
sr = VBYI(sr);
|
||
|
return VFMA(ti, sr, tr);
|
||
|
}
|
||
|
|
||
|
static inline V VZMULJ(V tx, V sr)
|
||
|
{
|
||
|
V tr, ti;
|
||
|
VEXTRACT_REIM(tr, ti, tx);
|
||
|
tr = VMUL(sr, tr);
|
||
|
sr = VBYI(sr);
|
||
|
return VFNMS(ti, sr, tr);
|
||
|
}
|
||
|
|
||
|
static inline V VZMULI(V tx, V sr)
|
||
|
{
|
||
|
V tr, ti;
|
||
|
VEXTRACT_REIM(tr, ti, tx);
|
||
|
ti = VMUL(ti, sr);
|
||
|
sr = VBYI(sr);
|
||
|
return VFMS(tr, sr, ti);
|
||
|
}
|
||
|
|
||
|
static inline V VZMULIJ(V tx, V sr)
|
||
|
{
|
||
|
V tr, ti;
|
||
|
VEXTRACT_REIM(tr, ti, tx);
|
||
|
ti = VMUL(ti, sr);
|
||
|
sr = VBYI(sr);
|
||
|
return VFMA(tr, sr, ti);
|
||
|
}
|
||
|
|
||
|
/* twiddle storage #1: compact, slower */
|
||
|
#ifdef FFTW_SINGLE
|
||
|
#define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
|
||
|
#else
|
||
|
#define VTW1(v,x) {TW_CEXP, v, x}
|
||
|
#endif
|
||
|
#define TWVL1 VL
|
||
|
static inline V BYTW1(const R *t, V sr)
|
||
|
{
|
||
|
V tx = LDA(t, 2, 0);
|
||
|
return VZMUL(tx, sr);
|
||
|
}
|
||
|
|
||
|
static inline V BYTWJ1(const R *t, V sr)
|
||
|
{
|
||
|
V tx = LDA(t, 2, 0);
|
||
|
return VZMULJ(tx, sr);
|
||
|
}
|
||
|
|
||
|
/* twiddle storage #2: twice the space, faster (when in cache) */
|
||
|
#ifdef FFTW_SINGLE
|
||
|
# define VTW2(v,x) \
|
||
|
{TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
|
||
|
{TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
|
||
|
#else
|
||
|
# define VTW2(v,x) \
|
||
|
{TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
|
||
|
#endif
|
||
|
#define TWVL2 (2 * VL)
|
||
|
|
||
|
static inline V BYTW2(const R *t, V sr)
|
||
|
{
|
||
|
V si = FLIP_RI(sr);
|
||
|
V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0);
|
||
|
return VFMA(ti, si, VMUL(tr, sr));
|
||
|
}
|
||
|
|
||
|
static inline V BYTWJ2(const R *t, V sr)
|
||
|
{
|
||
|
V si = FLIP_RI(sr);
|
||
|
V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0);
|
||
|
return VFNMS(ti, si, VMUL(tr, sr));
|
||
|
}
|
||
|
|
||
|
/* twiddle storage #3 */
|
||
|
#ifdef FFTW_SINGLE
|
||
|
# define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
|
||
|
#else
|
||
|
# define VTW3(v,x) {TW_CEXP, v, x}
|
||
|
#endif
|
||
|
# define TWVL3 (VL)
|
||
|
|
||
|
/* twiddle storage for split arrays */
|
||
|
#ifdef FFTW_SINGLE
|
||
|
# define VTWS(v,x) \
|
||
|
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
|
||
|
{TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
|
||
|
#else
|
||
|
# define VTWS(v,x) \
|
||
|
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
|
||
|
#endif
|
||
|
#define TWVLS (2 * VL)
|
||
|
|
||
|
#define VLEAVE() /* nothing */
|
||
|
|
||
|
#include "simd-common.h"
|