SuperMarioOdysseyOnline/include/sead/container/seadTreeMap.h

585 lines
15 KiB
C
Raw Normal View History

2022-06-16 21:33:18 +00:00
#pragma once
#include "basis/seadRawPrint.h"
#include "container/seadFreeList.h"
#include "prim/seadBitUtil.h"
#include "prim/seadDelegate.h"
#include "prim/seadSafeString.h"
namespace sead
{
template <typename Key>
class TreeMapNode;
/// Sorted associative container, implemented using a left-leaning red-black tree.
/// For an explanation of the algorithm, see https://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
template <typename Key>
class TreeMapImpl
{
public:
using Node = TreeMapNode<Key>;
void insert(Node* node);
void erase(const Key& key);
void clear();
Node* find(const Key& key) const { return find(mRoot, key); }
template <typename Callable>
void forEach(const Callable& callable) const
{
if (mRoot)
forEach(mRoot, callable);
}
Node* startIterating() const
{
if (!mRoot)
return nullptr;
return startIterating(mRoot);
}
Node* nextNode(Node* node) const
{
if (!node)
return nullptr;
// If there is a right child node, explore that branch first.
if (node->mRight)
{
node->mRight->setParent(node);
return startIterating(node->mRight);
}
// Otherwise, walk back up to the node P from which we reached this node
// by following P's left child pointer.
while (auto* const parent = node->getParent())
{
if (parent->mLeft == node)
return parent;
node = parent;
}
return nullptr;
}
protected:
/// Returns the left most child of a given node, marking each node with its parent
/// along the way.
static Node* startIterating(Node* node)
{
while (node->mLeft)
{
node->mLeft->setParent(node);
node = node->mLeft;
}
return node;
}
Node* insert(Node* root, Node* node);
Node* erase(Node* root, const Key& key);
Node* find(Node* root, const Key& key) const;
static inline Node* rotateLeft(Node* node);
static inline Node* rotateRight(Node* node);
static inline Node* moveRedLeft(Node* node);
static inline Node* moveRedRight(Node* node);
static Node* findMin(Node* node);
static Node* eraseMin(Node* node);
static inline Node* fixUp(Node* node);
static bool isRed(const Node* node) { return node && node->isRed(); }
static inline void flipColors(Node* node);
template <typename Callable>
static void forEach(Node* start, const Callable& callable);
Node* mRoot = nullptr;
};
/// Requires Key to have a compare() member function, which returns -1 if lhs < rhs, 0 if lhs = rhs
/// and 1 if lhs > rhs.
template <typename Key>
class TreeMapNode
{
public:
TreeMapNode()
{
mLeft = mRight = nullptr;
mColorAndPtr = 0;
}
virtual ~TreeMapNode() = default;
virtual void erase_() = 0;
const Key& key() const { return mKey; }
protected:
friend class TreeMapImpl<Key>;
enum class Color
{
Red = 0,
Black = 1,
};
void flipColor() { BitUtil::bitCastWrite(mColorAndPtr ^ 1u, &mColorAndPtr); }
void setColor(Color color) { mColorAndPtr = uintptr_t(color); }
void setParent(TreeMapNode* parent) { mColorAndPtr = (mColorAndPtr & 1) | uintptr_t(parent); }
/// @warning Only valid if setParent has been called!
TreeMapNode* getParent() const { return reinterpret_cast<TreeMapNode*>(mColorAndPtr & ~1); }
bool isRed() const { return (mColorAndPtr & 1u) == bool(Color::Red); }
TreeMapNode* mLeft;
TreeMapNode* mRight;
uintptr_t mColorAndPtr;
Key mKey;
};
/// Requires Key to have operator< defined
/// This can be specialized, but all specializations must define `compare` and `key` as follows.
template <typename Key>
struct TreeMapKeyImpl
{
TreeMapKeyImpl() = default;
TreeMapKeyImpl(const Key& key_) : key(key_) {}
TreeMapKeyImpl& operator=(const Key& key_)
{
key = key_;
return *this;
}
/// Returns -1 if mKey < rhs, 0 if mKey = rhs and 1 if mKey > rhs.
s32 compare(const TreeMapKeyImpl& rhs) const
{
if (key < rhs.key)
return -1;
if (rhs.key < key)
return 1;
return 0;
}
Key key;
};
/// Sorted associative container.
/// This is essentially std::map<Key, Value>
template <typename Key, typename Value>
class TreeMap : public TreeMapImpl<TreeMapKeyImpl<Key>>
{
public:
using MapImpl = TreeMapImpl<TreeMapKeyImpl<Key>>;
class Node : public MapImpl::Node
{
public:
Node(TreeMap* map, const Key& key, const Value& value) : mValue(value), mMap(map)
{
this->mKey = key;
}
void erase_() override;
Value& value() { return mValue; }
const Value& value() const { return mValue; }
private:
friend class TreeMap;
Value mValue;
TreeMap* mMap;
};
~TreeMap();
void allocBuffer(s32 node_max, Heap* heap, s32 alignment = sizeof(void*));
void setBuffer(s32 node_max, void* buffer);
void freeBuffer();
Value* insert(const Key& key, const Value& value);
void clear();
Node* find(const Key& key) const;
// Callable must have the signature Key&, Value&
template <typename Callable>
void forEach(const Callable& delegate) const;
Node* startIterating() const { return static_cast<Node*>(MapImpl::startIterating()); }
Node* nextNode(Node* node) const { return static_cast<Node*>(MapImpl::nextNode(node)); }
private:
void eraseNodeForClear_(typename MapImpl::Node* node);
FreeList mFreeList;
s32 mSize = 0;
s32 mCapacity = 0;
};
template <typename Key, typename Node>
class IntrusiveTreeMap : public TreeMapImpl<Key>
{
public:
using MapImpl = TreeMapImpl<Key>;
Node* find(const Key& key) const { return static_cast<Node*>(MapImpl::find(key)); }
// Callable must have the signature Node*
template <typename Callable>
void forEach(const Callable& delegate) const
{
MapImpl::forEach([delegate](auto* base_node) {
auto* node = static_cast<Node*>(base_node);
delegate(node);
});
}
Node* startIterating() const { return static_cast<Node*>(MapImpl::startIterating()); }
Node* nextNode(Node* node) const { return static_cast<Node*>(MapImpl::nextNode(node)); }
};
template <typename Key>
inline void TreeMapImpl<Key>::insert(Node* node)
{
mRoot = insert(mRoot, node);
mRoot->setColor(Node::Color::Black);
}
template <typename Key>
inline TreeMapNode<Key>* TreeMapImpl<Key>::insert(Node* root, Node* node)
{
if (!root)
{
node->mLeft = node->mRight = nullptr;
node->setColor(Node::Color::Red);
return node;
}
const s32 cmp = node->key().compare(root->key());
if (cmp < 0)
{
root->mLeft = insert(root->mLeft, node);
}
else if (cmp > 0)
{
root->mRight = insert(root->mRight, node);
}
else if (root != node)
{
node->mRight = root->mRight;
node->mLeft = root->mLeft;
node->mColorAndPtr = root->mColorAndPtr;
root->erase_();
root = node;
}
if (isRed(root->mRight) && !isRed(root->mLeft))
root = rotateLeft(root);
if (isRed(root->mLeft) && isRed(root->mLeft->mLeft))
root = rotateRight(root);
if (isRed(root->mLeft) && isRed(root->mRight))
flipColors(root);
return root;
}
template <typename Key>
inline void TreeMapImpl<Key>::erase(const Key& key)
{
mRoot = erase(mRoot, key);
if (mRoot)
mRoot->setColor(Node::Color::Black);
}
template <typename Key>
inline TreeMapNode<Key>* TreeMapImpl<Key>::erase(Node* root, const Key& key)
{
if (key.compare(root->key()) < 0)
{
if (!isRed(root->mLeft) && !isRed(root->mLeft->mLeft))
root = moveRedLeft(root);
root->mLeft = erase(root->mLeft, key);
}
else
{
if (isRed(root->mLeft))
root = rotateRight(root);
if (key.compare(root->key()) == 0 && !root->mRight)
{
root->erase_();
return nullptr;
}
if (!isRed(root->mRight) && !isRed(root->mRight->mLeft))
root = moveRedRight(root);
if (key.compare(root->key()) == 0)
{
Node* const min_node = findMin(root->mRight);
Node* target = root->mRight;
if (root->mRight)
target = find(root->mRight, min_node->key());
target->mRight = eraseMin(root->mRight);
target->mLeft = root->mLeft;
target->mColorAndPtr = root->mColorAndPtr;
root->erase_();
root = target;
}
else
{
root->mRight = erase(root->mRight, key);
}
}
return fixUp(root);
}
template <typename Key>
inline void TreeMapImpl<Key>::clear()
{
mRoot = nullptr;
}
template <typename Key>
inline TreeMapNode<Key>* TreeMapImpl<Key>::find(Node* root, const Key& key) const
{
Node* node = root;
while (node)
{
const s32 cmp = key.compare(node->key());
if (cmp < 0)
node = node->mLeft;
else if (cmp > 0)
node = node->mRight;
else
return node;
}
return nullptr;
}
template <typename Key>
template <typename Callable>
inline void TreeMapImpl<Key>::forEach(Node* start, const Callable& callable)
{
Node* i = start;
do
{
Node* node = i;
if (i->mLeft)
forEach(i->mLeft, callable);
i = i->mRight;
callable(node);
} while (i);
}
template <typename Key>
inline TreeMapNode<Key>* TreeMapImpl<Key>::rotateLeft(Node* node)
{
TreeMapNode<Key>* j = node->mRight;
node->mRight = j->mLeft;
j->mLeft = node;
j->mColorAndPtr = node->mColorAndPtr;
node->setColor(Node::Color::Red);
return j;
}
template <typename Key>
inline TreeMapNode<Key>* TreeMapImpl<Key>::rotateRight(Node* node)
{
TreeMapNode<Key>* j = node->mLeft;
node->mLeft = j->mRight;
j->mRight = node;
j->mColorAndPtr = node->mColorAndPtr;
node->setColor(Node::Color::Red);
return j;
}
// NON_MATCHING: this version matches the LLRB tree implementation and is better optimized;
// there is a useless store to node->mRight in the original version
template <typename Key>
inline TreeMapNode<Key>* TreeMapImpl<Key>::moveRedLeft(Node* node)
{
flipColors(node);
if (isRed(node->mRight->mLeft))
{
node->mRight = rotateRight(node->mRight);
node = rotateLeft(node);
flipColors(node);
}
return node;
}
template <typename Key>
inline TreeMapNode<Key>* TreeMapImpl<Key>::moveRedRight(Node* node)
{
flipColors(node);
if (isRed(node->mLeft->mLeft))
{
node = rotateRight(node);
flipColors(node);
}
return node;
}
template <typename Key>
inline TreeMapNode<Key>* TreeMapImpl<Key>::findMin(Node* node)
{
while (node->mLeft)
node = node->mLeft;
return node;
}
// NON_MATCHING: this version matches the LLRB tree implementation and is better optimized
template <typename Key>
inline TreeMapNode<Key>* TreeMapImpl<Key>::eraseMin(Node* node)
{
if (!node->mLeft)
return nullptr;
if (!isRed(node->mLeft) && !isRed(node->mLeft->mLeft))
node = moveRedLeft(node);
node->mLeft = eraseMin(node->mLeft);
#ifdef MATCHING_HACK_NX_CLANG
asm("");
#endif
return fixUp(node);
}
template <typename Key>
inline TreeMapNode<Key>* TreeMapImpl<Key>::fixUp(Node* node)
{
if (isRed(node->mRight))
node = rotateLeft(node);
if (isRed(node->mLeft) && isRed(node->mLeft->mLeft))
node = rotateRight(node);
if (isRed(node->mLeft) && isRed(node->mRight))
flipColors(node);
return node;
}
template <typename Key>
inline void TreeMapImpl<Key>::flipColors(Node* node)
{
node->flipColor();
node->mLeft->flipColor();
node->mRight->flipColor();
}
template <typename Key, typename Value>
inline void TreeMap<Key, Value>::Node::erase_()
{
TreeMap* const map = mMap;
void* const this_ = this;
// Note: Nintendo does not call the destructor, which is dangerous...
map->mFreeList.free(this_);
--map->mSize;
}
template <typename Key, typename Value>
inline TreeMap<Key, Value>::~TreeMap()
{
void* work = mFreeList.work();
if (!work)
return;
clear();
freeBuffer();
}
template <typename Key, typename Value>
inline void TreeMap<Key, Value>::allocBuffer(s32 node_max, Heap* heap, s32 alignment)
{
SEAD_ASSERT(mFreeList.work() == nullptr);
if (node_max <= 0)
{
SEAD_ASSERT_MSG(false, "node_max[%d] must be larger than zero", node_max);
AllocFailAssert(heap, node_max * sizeof(Node), alignment);
}
void* work = AllocBuffer(node_max * sizeof(Node), heap, alignment);
if (work)
setBuffer(node_max, work);
}
template <typename Key, typename Value>
inline void TreeMap<Key, Value>::setBuffer(s32 node_max, void* buffer)
{
mCapacity = node_max;
mFreeList.setWork(buffer, sizeof(Node), node_max);
}
template <typename Key, typename Value>
inline void TreeMap<Key, Value>::freeBuffer()
{
void* buffer = mFreeList.work();
if (!buffer)
return;
::operator delete[](buffer);
mCapacity = 0;
mFreeList.reset();
}
template <typename Key, typename Value>
inline Value* TreeMap<Key, Value>::insert(const Key& key, const Value& value)
{
if (mSize >= mCapacity)
{
if (Node* node = find(key))
{
node->value() = value;
return &node->value();
}
SEAD_ASSERT_MSG(false, "map is full.");
return nullptr;
}
Node* node = new (mFreeList.alloc()) Node(this, key, value);
++mSize;
MapImpl::insert(node);
return &node->value();
}
template <typename Key, typename Value>
inline void TreeMap<Key, Value>::clear()
{
Delegate1<TreeMap<Key, Value>, typename MapImpl::Node*> delegate(this,
&TreeMap::eraseNodeForClear_);
MapImpl::forEach(delegate);
mSize = 0;
MapImpl::clear();
}
template <typename Key, typename Value>
inline typename TreeMap<Key, Value>::Node* TreeMap<Key, Value>::find(const Key& key) const
{
return static_cast<Node*>(MapImpl::find(key));
}
template <typename Key, typename Value>
template <typename Callable>
inline void TreeMap<Key, Value>::forEach(const Callable& delegate) const
{
MapImpl::forEach([&delegate](auto* base_node) {
auto* node = static_cast<Node*>(base_node);
delegate(node->key(), node->value());
});
}
template <typename Key, typename Value>
inline void TreeMap<Key, Value>::eraseNodeForClear_(typename MapImpl::Node* node)
{
// Note: Nintendo does not call the destructor, which is dangerous...
mFreeList.free(node);
}
} // namespace sead