HeavenStudioPlus/Assets/Plugins/com.unity.uiextensions/Runtime/Scripts/Utilities/BezierPath.cs
2022-01-05 19:11:33 -05:00

350 lines
No EOL
11 KiB
C#

/**
This class demonstrates the code discussed in these two articles:
http://devmag.org.za/2011/04/05/bzier-curves-a-tutorial/
http://devmag.org.za/2011/06/23/bzier-path-algorithms/
Use this code as you wish, at your own risk. If it blows up
your computer, makes a plane crash, or otherwise cause damage,
injury, or death, it is not my fault.
@author Herman Tulleken, dev.mag.org.za
*/
using System.Collections.Generic;
namespace UnityEngine.UI.Extensions
{
/**
Class for representing a Bezier path, and methods for getting suitable points to
draw the curve with line segments.
*/
public class BezierPath
{
public int SegmentsPerCurve = 10;
public float MINIMUM_SQR_DISTANCE = 0.01f;
// This corresponds to about 172 degrees, 8 degrees from a straight line
public float DIVISION_THRESHOLD = -0.99f;
private List<Vector2> controlPoints;
private int curveCount; //how many bezier curves in this path?
/**
Constructs a new empty Bezier curve. Use one of these methods
to add points: SetControlPoints, Interpolate, SamplePoints.
*/
public BezierPath()
{
controlPoints = new List<Vector2>();
}
/**
Sets the control points of this Bezier path.
Points 0-3 forms the first Bezier curve, points
3-6 forms the second curve, etc.
*/
public void SetControlPoints(List<Vector2> newControlPoints)
{
controlPoints.Clear();
controlPoints.AddRange(newControlPoints);
curveCount = (controlPoints.Count - 1) / 3;
}
public void SetControlPoints(Vector2[] newControlPoints)
{
controlPoints.Clear();
controlPoints.AddRange(newControlPoints);
curveCount = (controlPoints.Count - 1) / 3;
}
/**
Returns the control points for this Bezier curve.
*/
public List<Vector2> GetControlPoints()
{
return controlPoints;
}
/**
Calculates a Bezier interpolated path for the given points.
*/
public void Interpolate(List<Vector2> segmentPoints, float scale)
{
controlPoints.Clear();
if (segmentPoints.Count < 2)
{
return;
}
for (int i = 0; i < segmentPoints.Count; i++)
{
if (i == 0) // is first
{
Vector2 p1 = segmentPoints[i];
Vector2 p2 = segmentPoints[i + 1];
Vector2 tangent = (p2 - p1);
Vector2 q1 = p1 + scale * tangent;
controlPoints.Add(p1);
controlPoints.Add(q1);
}
else if (i == segmentPoints.Count - 1) //last
{
Vector2 p0 = segmentPoints[i - 1];
Vector2 p1 = segmentPoints[i];
Vector2 tangent = (p1 - p0);
Vector2 q0 = p1 - scale * tangent;
controlPoints.Add(q0);
controlPoints.Add(p1);
}
else
{
Vector2 p0 = segmentPoints[i - 1];
Vector2 p1 = segmentPoints[i];
Vector2 p2 = segmentPoints[i + 1];
Vector2 tangent = (p2 - p0).normalized;
Vector2 q0 = p1 - scale * tangent * (p1 - p0).magnitude;
Vector2 q1 = p1 + scale * tangent * (p2 - p1).magnitude;
controlPoints.Add(q0);
controlPoints.Add(p1);
controlPoints.Add(q1);
}
}
curveCount = (controlPoints.Count - 1) / 3;
}
/**
Sample the given points as a Bezier path.
*/
public void SamplePoints(List<Vector2> sourcePoints, float minSqrDistance, float maxSqrDistance, float scale)
{
if (sourcePoints.Count < 2)
{
return;
}
Stack<Vector2> samplePoints = new Stack<Vector2>();
samplePoints.Push(sourcePoints[0]);
Vector2 potentialSamplePoint = sourcePoints[1];
int i = 2;
for (i = 2; i < sourcePoints.Count; i++)
{
if (
((potentialSamplePoint - sourcePoints[i]).sqrMagnitude > minSqrDistance) &&
((samplePoints.Peek() - sourcePoints[i]).sqrMagnitude > maxSqrDistance))
{
samplePoints.Push(potentialSamplePoint);
}
potentialSamplePoint = sourcePoints[i];
}
//now handle last bit of curve
Vector2 p1 = samplePoints.Pop(); //last sample point
Vector2 p0 = samplePoints.Peek(); //second last sample point
Vector2 tangent = (p0 - potentialSamplePoint).normalized;
float d2 = (potentialSamplePoint - p1).magnitude;
float d1 = (p1 - p0).magnitude;
p1 = p1 + tangent * ((d1 - d2) / 2);
samplePoints.Push(p1);
samplePoints.Push(potentialSamplePoint);
Interpolate(new List<Vector2>(samplePoints), scale);
}
/**
Calculates a point on the path.
@param curveIndex The index of the curve that the point is on. For example,
the second curve (index 1) is the curve with control points 3, 4, 5, and 6.
@param t The parameter indicating where on the curve the point is. 0 corresponds
to the "left" point, 1 corresponds to the "right" end point.
*/
public Vector2 CalculateBezierPoint(int curveIndex, float t)
{
int nodeIndex = curveIndex * 3;
Vector2 p0 = controlPoints[nodeIndex];
Vector2 p1 = controlPoints[nodeIndex + 1];
Vector2 p2 = controlPoints[nodeIndex + 2];
Vector2 p3 = controlPoints[nodeIndex + 3];
return CalculateBezierPoint(t, p0, p1, p2, p3);
}
/**
Gets the drawing points. This implementation simply calculates a certain number
of points per curve.
*/
public List<Vector2> GetDrawingPoints0()
{
List<Vector2> drawingPoints = new List<Vector2>();
for (int curveIndex = 0; curveIndex < curveCount; curveIndex++)
{
if (curveIndex == 0) //Only do this for the first end point.
//When i != 0, this coincides with the
//end point of the previous segment,
{
drawingPoints.Add(CalculateBezierPoint(curveIndex, 0));
}
for (int j = 1; j <= SegmentsPerCurve; j++)
{
float t = j / (float)SegmentsPerCurve;
drawingPoints.Add(CalculateBezierPoint(curveIndex, t));
}
}
return drawingPoints;
}
/**
Gets the drawing points. This implementation simply calculates a certain number
of points per curve.
This is a slightly different implementation from the one above.
*/
public List<Vector2> GetDrawingPoints1()
{
List<Vector2> drawingPoints = new List<Vector2>();
for (int i = 0; i < controlPoints.Count - 3; i += 3)
{
Vector2 p0 = controlPoints[i];
Vector2 p1 = controlPoints[i + 1];
Vector2 p2 = controlPoints[i + 2];
Vector2 p3 = controlPoints[i + 3];
if (i == 0) //only do this for the first end point. When i != 0, this coincides with the end point of the previous segment,
{
drawingPoints.Add(CalculateBezierPoint(0, p0, p1, p2, p3));
}
for (int j = 1; j <= SegmentsPerCurve; j++)
{
float t = j / (float)SegmentsPerCurve;
drawingPoints.Add(CalculateBezierPoint(t, p0, p1, p2, p3));
}
}
return drawingPoints;
}
/**
This gets the drawing points of a bezier curve, using recursive division,
which results in less points for the same accuracy as the above implementation.
*/
public List<Vector2> GetDrawingPoints2()
{
List<Vector2> drawingPoints = new List<Vector2>();
for (int curveIndex = 0; curveIndex < curveCount; curveIndex++)
{
List<Vector2> bezierCurveDrawingPoints = FindDrawingPoints(curveIndex);
if (curveIndex != 0)
{
//remove the fist point, as it coincides with the last point of the previous Bezier curve.
bezierCurveDrawingPoints.RemoveAt(0);
}
drawingPoints.AddRange(bezierCurveDrawingPoints);
}
return drawingPoints;
}
List<Vector2> FindDrawingPoints(int curveIndex)
{
List<Vector2> pointList = new List<Vector2>();
Vector2 left = CalculateBezierPoint(curveIndex, 0);
Vector2 right = CalculateBezierPoint(curveIndex, 1);
pointList.Add(left);
pointList.Add(right);
FindDrawingPoints(curveIndex, 0, 1, pointList, 1);
return pointList;
}
/**
@returns the number of points added.
*/
int FindDrawingPoints(int curveIndex, float t0, float t1,
List<Vector2> pointList, int insertionIndex)
{
Vector2 left = CalculateBezierPoint(curveIndex, t0);
Vector2 right = CalculateBezierPoint(curveIndex, t1);
if ((left - right).sqrMagnitude < MINIMUM_SQR_DISTANCE)
{
return 0;
}
float tMid = (t0 + t1) / 2;
Vector2 mid = CalculateBezierPoint(curveIndex, tMid);
Vector2 leftDirection = (left - mid).normalized;
Vector2 rightDirection = (right - mid).normalized;
if (Vector2.Dot(leftDirection, rightDirection) > DIVISION_THRESHOLD || Mathf.Abs(tMid - 0.5f) < 0.0001f)
{
int pointsAddedCount = 0;
pointsAddedCount += FindDrawingPoints(curveIndex, t0, tMid, pointList, insertionIndex);
pointList.Insert(insertionIndex + pointsAddedCount, mid);
pointsAddedCount++;
pointsAddedCount += FindDrawingPoints(curveIndex, tMid, t1, pointList, insertionIndex + pointsAddedCount);
return pointsAddedCount;
}
return 0;
}
/**
Calculates a point on the Bezier curve represented with the four control points given.
*/
private Vector2 CalculateBezierPoint(float t, Vector2 p0, Vector2 p1, Vector2 p2, Vector2 p3)
{
float u = 1 - t;
float tt = t * t;
float uu = u * u;
float uuu = uu * u;
float ttt = tt * t;
Vector2 p = uuu * p0; //first term
p += 3 * uu * t * p1; //second term
p += 3 * u * tt * p2; //third term
p += ttt * p3; //fourth term
return p;
}
}
}