float2 UnpackUV(float uv) { float2 output; output.x = floor(uv / 4096.0); output.y = uv - 4096.0 * output.x; return output * 0.001953125; } float4 BlendARGB(float4 overlying, float4 underlying) { overlying.rgb *= overlying.a; underlying.rgb *= underlying.a; float3 blended = overlying.rgb + ((1 - overlying.a) * underlying.rgb); float alpha = underlying.a + (1 - underlying.a) * overlying.a; return float4(blended / alpha, alpha); } float3 GetSpecular(float3 n, float3 l) { float spec = pow(max(0.0, dot(n, l)), _Reflectivity); return _SpecularColor.rgb * spec * _SpecularPower; } void GetSurfaceNormal_float(texture2D atlas, float textureWidth, float textureHeight, float2 uv, bool isFront, out float3 nornmal) { float3 delta = float3(1.0 / textureWidth, 1.0 / textureHeight, 0.0); // Read "height field" float4 h = float4( SAMPLE_TEXTURE2D(atlas, SamplerState_Linear_Clamp, uv - delta.xz).a, SAMPLE_TEXTURE2D(atlas, SamplerState_Linear_Clamp, uv + delta.xz).a, SAMPLE_TEXTURE2D(atlas, SamplerState_Linear_Clamp, uv - delta.zy).a, SAMPLE_TEXTURE2D(atlas, SamplerState_Linear_Clamp, uv + delta.zy).a); bool raisedBevel = _BevelType; h += _BevelOffset; float bevelWidth = max(.01, _BevelWidth); // Track outline h -= .5; h /= bevelWidth; h = saturate(h + .5); if (raisedBevel) h = 1 - abs(h * 2.0 - 1.0); h = lerp(h, sin(h * 3.141592 / 2.0), float4(_BevelRoundness, _BevelRoundness, _BevelRoundness, _BevelRoundness)); h = min(h, 1.0 - float4(_BevelClamp, _BevelClamp, _BevelClamp, _BevelClamp)); h *= _BevelAmount * bevelWidth * _GradientScale * -2.0; float3 va = normalize(float3(-1.0, 0.0, h.y - h.x)); float3 vb = normalize(float3(0.0, 1.0, h.w - h.z)); float3 f = float3(1, 1, 1); if (isFront) f = float3(1, 1, -1); nornmal = cross(va, vb) * f; } void EvaluateLight_float(float4 faceColor, float3 n, out float4 color) { n.z = abs(n.z); float3 light = normalize(float3(sin(_LightAngle), cos(_LightAngle), 1.0)); float3 col = max(faceColor.rgb, 0) + GetSpecular(n, light)* faceColor.a; //faceColor.rgb += col * faceColor.a; col *= 1 - (dot(n, light) * _Diffuse); col *= lerp(_Ambient, 1, n.z * n.z); //fixed4 reflcol = texCUBE(_Cube, reflect(input.viewDir, -n)); //faceColor.rgb += reflcol.rgb * lerp(_ReflectFaceColor.rgb, _ReflectOutlineColor.rgb, saturate(sd + outline * 0.5)) * faceColor.a; color = float4(col, faceColor.a); } // Add custom function to handle time in HDRP // void GenerateUV_float(float2 inUV, float4 transform, float2 animSpeed, out float2 outUV) { outUV = inUV * transform.xy + transform.zw + (animSpeed * _Time.y); } void ComputeUVOffset_float(float texWidth, float texHeight, float2 offset, float SDR, out float2 uvOffset) { uvOffset = float2(-offset.x * SDR / texWidth, -offset.y * SDR / texHeight); } void ScreenSpaceRatio2_float(float4x4 projection, float4 position, float2 objectScale, float screenWidth, float screenHeight, float fontScale, out float SSR) { float2 pixelSize = position.w; pixelSize /= (objectScale * mul((float2x2)projection, float2(screenWidth, screenHeight))); SSR = rsqrt(dot(pixelSize, pixelSize)*2) * fontScale; } // UV : Texture coordinate of the source distance field texture // TextureSize : Size of the source distance field texture // Filter : Enable perspective filter (soften) void ScreenSpaceRatio_float(float2 UV, float TextureSize, bool Filter, out float SSR) { if(Filter) { float2 a = float2(ddx(UV.x), ddy(UV.x)); float2 b = float2(ddx(UV.y), ddy(UV.y)); float s = lerp(dot(a,a), dot(b,b), 0.5); SSR = rsqrt(s) / TextureSize; } else { float s = rsqrt(abs(ddx(UV.x) * ddy(UV.y) - ddy(UV.x) * ddx(UV.y))); SSR = s / TextureSize; } } // SSR : Screen Space Ratio // SD : Signed Distance (encoded : Distance / SDR + .5) // SDR : Signed Distance Ratio // // IsoPerimeter : Dilate / Contract the shape void ComputeSDF_float(float SSR, float SD, float SDR, float isoPerimeter, float softness, out float outAlpha) { softness *= SSR * SDR; float d = (SD - 0.5) * SDR; // Signed distance to edge, in Texture space outAlpha = saturate((d * 2.0 * SSR + 0.5 + isoPerimeter * SDR * SSR + softness * 0.5) / (1.0 + softness)); // Screen pixel coverage (alpha) } void ComputeSDF2_float(float SSR, float SD, float SDR, float2 isoPerimeter, float2 softness, out float2 outAlpha) { softness *= SSR * SDR; float d = (SD - 0.5f) * SDR; outAlpha = saturate((d * 2.0f * SSR + 0.5f + isoPerimeter * SDR * SSR + softness * 0.5) / (1.0 + softness)); } void ComputeSDF4_float(float SSR, float SD, float SDR, float4 isoPerimeter, float4 softness, out float4 outAlpha) { softness *= SSR * SDR; float d = (SD - 0.5f) * SDR; outAlpha = saturate((d * 2.0f * SSR + 0.5f + isoPerimeter * SDR * SSR + softness * 0.5) / (1.0 + softness)); } void ComputeSDF44_float(float SSR, float4 SD, float SDR, float4 isoPerimeter, float4 softness, bool outline, out float4 outAlpha) { softness *= SSR * SDR; float4 d = (SD - 0.5f) * SDR; if(outline) d.w = max(max(d.x, d.y), d.z); outAlpha = saturate((d * 2.0f * SSR + 0.5f + isoPerimeter * SDR * SSR + softness * 0.5) / (1.0 + softness)); } void Composite_float(float4 overlying, float4 underlying, out float4 outColor) { outColor = BlendARGB(overlying, underlying); } // Face only void Layer1_float(float alpha, float4 color0, out float4 outColor) { color0.a *= alpha; outColor = color0; } // Face + 1 Outline void Layer2_float(float2 alpha, float4 color0, float4 color1, out float4 outColor) { color1.a *= alpha.y; color0.rgb *= color0.a; color1.rgb *= color1.a; outColor = lerp(color1, color0, alpha.x); outColor.rgb /= outColor.a; } // Face + 3 Outline void Layer4_float(float4 alpha, float4 color0, float4 color1, float4 color2, float4 color3, out float4 outColor) { color3.a *= alpha.w; color0.rgb *= color0.a; color1.rgb *= color1.a; color2.rgb *= color2.a; color3.rgb *= color3.a; outColor = lerp(lerp(lerp(color3, color2, alpha.z), color1, alpha.y), color0, alpha.x); outColor.rgb /= outColor.a; }